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The nonlinear development of inviscid Görtler vortices in a three-dimensional boun-
dary-layer flow is considered by extending the theory of Blackaby et al., who consider
the closely related problem concerning the nonlinear development of disturbances in
stratified shear flows. The inviscid Görtler modes considered are initially unstable
(and hence growing) based on linear theory; however, following others, we assume
that the effects of boundary-layer spreading result in them evolving in a linear fash-
ion until they reach a stage where their amplitudes are sufficiently large, and their
growth rates have diminished sufficiently, such that their subsequent evolution can
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976 N. Blackaby, A. Dando and P. Hall

be considered within the framework of a weakly nonlinear theory based on a nonlin-
ear, non-equilibrium critical-layer theory. As with the closely related stratified-shear
flow problem, three possible nonlinear integro-differential evolution equations for the
disturbance amplitude should arise; however, it is found that only two of these are in
fact possible. One of the possible integro-differential evolution equations has a cubic-
nonlinearity due to supercriticality (non-neutrality) effects, while the other amplitude
evolution equation has a quintic nonlinearity but is only relevant for larger sizes of
disturbance. Thus, in this paper, attention is concentrated on the former, since this
equation is appropriate earlier in the evolution process of the Görtler modes. Numer-
ical results are presented which demonstrate that variations in the level of cross-flow
present in the underlying flow have a significant effect on the nonlinear problem, as
they do on the linear problem. It is found that the consideration of a spatial evolution
problem (as opposed to a temporal stability approach adopted in the above paper)
leads to significant changes to the resulting evolution equations.

1. Introduction

Since the work of Görtler (1940) there has been considerable interest in the bound-
ary layer instability mechanism named after him. Much of the early work on Görtler
vortices was shown to be flawed, by Hall (1982a, b), because it invoked the paral-
lel flow approximation and thus ignored the effects of boundary-layer growth. Hall
(1983) went on to show that for Görtler vortices of order-one wavenumber the ideas
of unique neutral curves and growth rates are untenable. The stability properties of
such modes depend upon the initial form and location of the disturbance.

Since the early 1980s there have been numerous theoretical studies on Görtler vor-
tices; the reader is referred to the review papers by Hall (1990) and Saric (1994) for an
overview of the subject. Most of these papers have concentrated on two-dimensional
boundary layers but obviously many practical situations in which Görtler vortices
arise will be three-dimensional in nature. One example of particular interest has
been caused by the development of laminar flow control airfoils which have areas of
concave curvature on the underside of the airfoil near the leading edge. When the
wing is swept the flow becomes fully three-dimensional. Consequently several recent
studies have considered the stability of Görtler vortices in three-dimensional bound-
ary layers and this three-dimensionality has been shown to have an important effect
upon the stability properties of these vortices.

Bassom & Hall (1991) looked at the viscous and inviscid stability problems for an
incompressible boundary layer flow, which could support both Görtler and crossflow
vortices, over an infinitely long swept cylinder. They found that, for sufficiently
large values of the parameter representing the degree of three-dimensionality of the
flow, there are no Görtler vortices present in a boundary layer which, in the zero
crossflow case, is centrifugally unstable. The inviscid stability problem has been
extended to compressible boundary layers by Dando (1992). Similar results to the
incompressible case are found; three-dimensionality has a stabilizing effect on vortices
of all wavelengths except for a band of small wavelengths where the vortices are
dominated by crossflow effects and are in fact of the type considered by Gregory
et al. (1955). The numerical results of Dando (1992) showed that for larger Mach
numbers a larger crossflow was needed to completely stabilize Görtler vortices over a
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Nonlinear evolution of inviscid Görtler vortices 977

band of wavenumbers and this was confirmed by the asymptotic study of Fu & Hall
(1994), who considered the hypersonic limit.

One of the most interesting points to emerge from the work of Bassom & Hall
(1991) and Dando (1992) was that in the presence of a relatively weak crossflow,
Görtler vortex disturbances of all wavelengths are stabilized such that the inviscid
modes possess some of the largest growth rates while also being neutral at certain
other wavenumbers. Furthermore their governing equation has many similarities to
the Taylor–Goldstein equation which governs the linear stability of stratified shear
flows (see Goldstein 1931; Taylor 1931). In fact Blackaby & Choudhari (1993) have
illustrated the close connection between the two problems of inviscid Görtler modes
in three-dimensional boundary layers and modes on unstable stratified shear layers,
and proposed a definition of a generalized Richardson number (this is the parameter
which characterizes the stratification of a shear flow) for such centrifugally driven
instabilities. The study of Bassom & Otto (1993) used a classical weakly nonlinear
approach to consider the stability of O(G1/5) wavenumber (here G is the Görtler
number), essentially viscous, modes in three-dimensional boundary layers. In the
present paper we restrict our attention to the O(1) wavenumber inviscid modes.

It was this close connection between the two problems which encouraged the au-
thors, in their desire to develop a theory describing the nonlinear evolution of these
inviscid Görtler modes, to initially consider the nonlinear evolution of modes on
stratified shear layers in Blackaby et al. (1993). In order to place the latter pa-
per and the current study in context, and to understand the theory underpinning
both, it is necessary to review some of the recent contributions to nonlinear critical-
layer theory; a more general review of the theory can be found in the papers by
Stewartson (1981) and Maslowe (1986). Over the last couple of decades much at-
tention has been focused on the nonlinear stability of non-stratified shear layers.
In the case where there is no vertical density variation the linear stability of the
flow is usually governed by the familiar Rayleigh equation (to which the Taylor–
Goldstein equation reduces for zero Richardson number). Benney & Bergeron (1969)
developed the so-called equilibrium critical layer theory: here the mode is treated
as ‘quasi-steady’ inside the critical layer as well as outside it. Nonlinearity affects
the jump imposed across the critical layer and hence leads to modified results for
the neutral (equilibrium) modes. Haberman (1972) extended the theory to include
critical layers where viscosity is also significant. Some of the early studies of non-
equilibrium critical layers include the work of Brown & Stewartson (1978), Warn &
Warn (1978) and Hickernell (1984). The key paper by Hickernell (1984) concerned a
shear layer affected by Coriolis (rotational) effects; here the weakly nonlinear theory
leads to an integro-differential equation rather than the (previously) more familiar
Stuart–Watson–Landau equation with its ‘polynomial’ nonlinear terms. In fact such
integro-differential equations result naturally from non-equilibrium nonlinear critical
layer theories when the shear layer is coupled with other physical factors such as, for
instance, Coriolis effects (Hickernell 1984; Shukhman 1991); compressibility effects
(Goldstein & Leib 1989); three-dimensionality effects (Goldstein & Choi 1989; Wu et
al. 1993) and buoyancy effects (Churilov & Shukhman 1988; Blackaby et al. 1993).
However, the case of a ‘simple’ shear layer, not affected by any additional physical
factors, is a special case in the sense that it does not lead to an integro-differential
equation; instead, Goldstein & Leib (1988) found that the nonlinear evolution of
a disturbance was governed by the full unsteady nonlinear critical-layer equations.
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978 N. Blackaby, A. Dando and P. Hall

This difference is due to the additional physical factors, of the former cases, resulting
in stronger singularities of the inviscid disturbance quantities at the critical level.

At first sight, it appears that weakly nonlinear theories can only be usefully applied
to marginally unstable flows; they rely on small growth rates and so the unstable
disturbance of concern must be near to a neutral state. Thus it was believed that
such theories are incapable of describing the initial evolution of ‘far-from-neutral’
unstable modes. However, several recent studies have derived integro-differential
equations, using weakly nonlinear theories, to describe the nonlinear evolution of
(general) unstable modes on a variety of shear layers (see the previous paragraph).
These studies are based on the idea that, in actual physical flow situations, shear
layer spreading or other external changes would result in the otherwise relatively
unstable modes having their growth rates diminished in real terms, so that a weakly
nonlinear critical-layer theory becomes appropriate. The work in this paper is based
on the assumption that boundary layer growth acts in a similar manner to shear
layer spreading. This theory is supported by the work of Michalke (1964), Crighton
& Gaster (1976) and the excellent comparison with experiments recently achieved
by Hultgren (1992). For further discussion of non-equilibrium critical layer theory
the reader is directed to the reviews of Cowley & Wu (1993) and Goldstein (1994).

In this study we use weakly nonlinear and non-equilibrium critical-layer theories to
describe the spatial, nonlinear development of inviscid, unstable Görtler modes in an
incompressible, weakly three-dimensional boundary-layer. The theory of this paper
is extendable to compressible boundary layers and also has obvious applications to
inviscid modes in a flow above a heated plate, similar to those considered by Hall &
Morris (1992).

While different from the approach adopted in this study, there are alternate or
complementary nonlinear theories that have been developed recently in which two
or more of the flow disturbances mutually interact. Such theories generally require
smaller disturbance amplitudes but may also need the disturbances to exist in spe-
cific configurations. These other theories are generally referred to as wave–wave and
vortex–wave interactions. For a discussion of wave–wave interactions and resonant
triads the reader is directed to the book by Craik (1985). The ideas behind resonant
triads and non-equilibrium critical layers have been combined in works by Goldstein
& Lee (1992) and Wu (1992) which both consider resonant triad interactions where
the growth rates of the disturbance are controlled by nonlinear interactions inside
critical layers. Strongly nonlinear vortex–wave interactions were first considered by
Hall & Smith (1991) and their ideas are clarified and extended by Brown et al. (1993);
Smith et al. (1993) and Brown & Smith (1996). In fact, there are mathematical con-
nections between these different nonlinear theories; for example, Wu et al. (1993) in
their non-equilibrium, nonlinear-critical-layer study showed that the viscous limit of
their amplitude equation is the same as the amplitude equation obtained by Smith
et al. (1993) in their investigation of a vortex–wave interaction.

The rest of this paper is laid out as follows. In the next section we present some
background details of the flow concerning us in this paper, namely inviscid Görtler
vortices in three-dimensional incompressible boundary layers. In §3 the flow outside
the critical layer is considered; while §4 covers the analysis of the flow inside the
critical layer, concentrating on the derivation of the integro-differential amplitude
evolution equation with cubic nonlinearity due to supercriticality effects. In §5 we
briefly consider the amplitude equation with cubic nonlinearity due to viscous effects.
In §6 we examine some numerical solutions for the amplitude evolution equation
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with cubic nonlinearity due to supercriticality effects, before finally drawing some
conclusions in §7.

2. Inviscid Görtler vortices in three-dimensional boundary layers:
linear theory

It is helpful to recap the scalings and arguments that lead to the governing equation
for inviscid Görtler vortices in three-dimensional boundary layers. In this paper we
shall consider an incompressible flow. A more detailed derivation of the governing
equation can be found in the papers by Bassom & Hall (1991), Dando (1992) and
Fu & Hall (1994), for incompressible, compressible and hypersonic boundary-layer
flows respectively.

The boundary layer considered is that of a flow over the infinite cylinder y∗ = 0,
−∞ < z∗ <∞ so that the z∗-axis is a generator of the cylinder and y∗ measures the
distance normal to the surface. The x∗-coordinate measures distance along the curved
surface, which has variable curvature (1/m∗)K(x∗/l∗) where m∗ and l∗ are typical
length scales in the normal and streamwise directions. Here, the superscript asterisk
is used to denote dimensional quantities; we shall non-dimensionalize our problem in
due course. The Reynolds number, Re, Görtler number, G, and curvature parameter,
δ, are defined by

Re = u∗∞l
∗/κ∗, G = 2Re1/2δ, δ = l∗/m∗, (2.1)

where u∗∞ is a typical flow velocity in the streamwise direction and κ∗ is the kinematic
viscosity of the fluid.

The Reynolds number is assumed to be large, while δ is sufficiently small so that
as δ → 0 the parameter G is fixed and of order one. The basic three-dimensional
boundary layer is taken to be of the form

u = u∗∞(u(x, Y ), Re−1/2v(x, Y ), Re−1/2λ(x)w(x, Y ))(1 +O(Re−1/2)), (2.2)

with the non-dimensionalizations and scalings

x = x∗/l∗, Y = Re1/2y∗/l∗, (2.3)

where the parameter λ is a measure of the relative strength of the crossflow present.
The basic state is perturbed by writing

u = u∗∞(u+ εŨ(x, Y )E, Re−1/2v + εRe−1/2Ṽ (x, Y )E,

Re−1/2λw + εRe−1/2W̃ (x, Y )E)(1 +O(Re−1/2)), (2.4 a)

p = p(x) + εRe−1P̃ (x, Y )E +O(Re−3/2), (2.4 b)

where ε is a small parameter characterizing the magnitude of the vortex mode and

E = exp{iaZ}, Z = Re1/2z∗/l∗. (2.5)

We now consider the inviscid limit (G� 1) of the Görtler problem by introducing a
scaled spatial growth rate, β, and the scalings

[Ũ(x0, Y ), Ṽ (x0, Y ), W̃ (x0, Y ), P̃ (x0, Y )]

= [ ˜̃U(Y ), G1/2 ˜̃V (Y ), G1/2 ˜̃W (Y ), G ˜̃P (Y )] exp
{∫

G1/2β(x) dx
}
, (2.6 a)

λ(x0) = G1/2λ(x0); (2.6 b)
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980 N. Blackaby, A. Dando and P. Hall

these scales were obtained independently by Timoshin (1990) and Denier et al. (1991)
for two-dimensional boundary-layer flows. Here x = x0 is the local streamwise lo-
cation under consideration. Upon substituting these expansions into the continuity
and momentum equations and letting G→∞ we obtain

β ˜̃U + ˜̃V Y + ia ˜̃W = 0, (2.7 a)

(βu+ iaλw) ˜̃U + uY
˜̃V = 0, (2.7 b)

(βu+ iaλw) ˜̃V +Ku ˜̃U = − ˜̃P Y , (2.7 c)

(βu+ iaλw) ˜̃W + λwY
˜̃V = −ia ˜̃P , (2.7 d)

from which it can easily be shown that ˜̃V satisfies

˜̃V Y Y −
(
a2 +

(βuY Y + iaλwY Y )
(βu+ iaλw)

− a2KuuY
(βu+ iaλw)2

)
˜̃V = 0, (2.8)

subject to the boundary conditions ˜̃V (0) = 0 and ˜̃V → 0 as Y → ∞. This is the
equation that controls the inviscid growth of Görtler vortices in an incompressible,
weakly three-dimensional boundary layer and, as noted earlier, it closely resembles
the Taylor–Goldstein equation.

We choose to consider a Falkner–Skan–Cooke profile as a realistic yet relatively
simple base flow; note that we cannot consider a Blasius flow as Hall (1985) showed
that when u and w are linearly related the whole problem of Görtler vortices in
three-dimensional boundary layers becomes degenerate and can be reduced to the
two-dimensional case. In fact the base flow is chosen to have the similarity-solution
form

u = xmfŶ (Ŷ ), w = g(Ŷ ), Ŷ = (1
2(1 +m))1/2x(m−1)/2Y, (2.9)

where f and g satisfy

fŶ Ŷ Ŷ + ffŶ Ŷ +
2m
m+ 1

(1− f2
Ŷ

) = 0, f(0) = fŶ (0) = 0,

fŶ (∞) = 1, gŶ Ŷ + fgŶ = 0, g(0) = 0, g(∞) = 1.

 (2.10)

The value m = 1
3 was chosen for the numerical results presented in this paper. This

choice for m corresponds to that chosen in the linear-stability studies of Bassom &
Hall (1991) and Dando (1992), although it is important to note that there is a minor
error in the base flow used in these papers. In this paper we choose to scale a, β and
K by writing

(a, β,K) = (1
2(1 +m))1/2(x(m−1)/2â, x−(m+1)/2β̂, x−3(m+1)/2K̂), (2.11)

so that equation (2.8) becomes

˜̃V Ŷ Ŷ (Ŷ )−
(
â2 +

(β̂fŶ Ŷ Ŷ + iâλgŶ Ŷ )

(β̂fŶ + iâλg)
− K̂â2fŶ fŶ Ŷ

(β̂fŶ + iâλg)2

)
˜̃V (Ŷ ) = 0. (2.12)

In figures 1a–c we present solutions of (2.12), showing plots of the scaled growth
rate, β̂, against the scaled spanwise wavenumber, â, which illustrate the effect that
crossflow has on inviscid Görtler vortices. These results are all for K̂ = 1 and m = 1

3 ;
further details can be found in the papers by Bassom & Hall (1991) and Dando
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Figure 1. Real parts of the scaled spatial growth rate, β̂, versus the scaled spanwise wavenumber,
â, for the cases when (a) there is no crossflow present (top figure), (b) λ = 5 (middle figure),
and (c) λ = 10 (bottom figure).

(1992). Note that there are an infinite number of modes which, in the presence
of a relatively weak crossflow, are stabilized for almost all wavelengths, such that
the inviscid modes possess some of the largest growth rates while also attaining a
neutral state at certain other wavenumbers. In their key study, Bassom & Hall (1991)
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Figure 2. The neutral curve of the fundamental (solid line), second harmonic (dashed line) and
third harmonic (dotted line) for the first Görtler mode.

solely concentrated on the so-called first mode since this mode has (by definition)
the highest growth rates at most wavenumbers. In the follow-up studies by Dando
(1992) and Blackaby & Choudhari (1993), it was shown (independently) that the
higher modes, with increasing cross-flow, behave very similarly to the first mode
but, for certain ranges of wavenumber, these higher modes can still be (marginally)
unstable even though the first mode has been completely stabilized by the cross-
flow. Since all these modes satisfy the same equation (2.8) (or the scaled version,
equation (2.12)), the analysis presented in this article is relevant to all of these
modes; however, for simplicity’s sake, we restrict our attention to the first mode (i.e.
the one considered by Bassom & Hall (1991)) when presenting numerical results of
the evolution equation in §6.

The close relationship between equation (2.8) and the Taylor–Goldstein equa-
tion was considered in detail by Blackaby & Choudhari (1993). In particular, they
proposed a generalized definition of the Richardson number for such vortex flows,
namely

J =
a2KucuYc

(βuYc + iaλwYc)2 , (2.13)

where the subscript ‘c’ denotes evaluation at the critical level, Y = Yc, where

βu(Yc) + iaλw(Yc) = 0;

note that β is purely imaginary for these neutral modes. A similar definition of the
Richardson number is available for inviscid Görtler modes in compressible three-
dimensional boundary-layers flows (see Dando 1993).

It is possible to calculate neutral curves for the Görtler modes (see figure 2; see
also figure 1 in Blackaby & Choudhari 1993) and then using the same definition of
ν as used in the stratified shear-layer problem, namely

ν2 = 1
4(1− 4J), (2.14)

we can calculate the numerical values of ν on the neutral curves. In fact, to fully
determine ν, it is necessary to inspect the shape of the eigenfunctions of the neutral
modes, so that the sign of ν can be deduced. It can easily be shown that solutions
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of (2.8) have the behaviour

˜̃V ∼ |Y − Yc|1/2+ν +O(|Y − Yc|−1/2+ν) as Y → Yc,

i.e. near the critical-layer, the solution is proportional to just one of the Frobenius
series solutions (i.e. the one corresponding to the indicial root 1

2 + ν) and contains
none of the other Frobenius series solution (corresponding to the indicial root 1

2−ν).
The last result has a quite significant effect on the analysis necessary to derive

a nonlinear evolution-equation for the amplitude of the disturbance; essentially, a
corollary of this result is that the ‘largest’ nonlinear jump term has zero coefficient
and hence we have to seek non-zero, nonlinear jumps at higher orders in the critical-
layer analysis. The property that neutral eigenfunctions of (2.8) are proportional to
just one of the associated Frobenius solutions near the critical layer was noted by
Blackaby & Choudhari (1993). However, given the similarities between (2.8) and the
Taylor–Goldstein equation, this result is not surprising; it is merely an extension of
one of the theorems due to Miles (1961).

In figure 2, the neutral curve for the first (fundamental) inviscid-Görtler-mode
is presented. Recall that, in contrast to other hydrodynamic stability analyses, the
inside of the neutral curve corresponds to stable flow configurations, i.e. on crossing
the left-hand branch of the neutral curve (in the direction of increasing a) we move
from a regime where the flow is unstable, into a regime where the flow is stable. The
weakly nonlinear problem considered in this paper is appropriate to locations just
to the left of the left-hand branch of this neutral curve. We consider disturbance(s)
which are initially generated in the unstable regime (well to) the left of the left-
hand branch of the neutral curve. The disturbance will initially grow (since the
flow is unstable there) but viscous spreading effects (e.g. boundary-layer growth)
will dampen the growth rate of the disturbance and the disturbance approaches a
neutral state corresponding to a location on the left-hand branch of the neutral curve.
However, before a neutral state can be attained (if it ever is), the disturbance must
pass through the the weakly nonlinear regime located just to the left of the left-hand
branch; note that weakly nonlinear theory is valid here since (i) viscous spreading
effects have dampened the growth rate, and (ii) since the disturbance has evolved
through an unstable machine, its amplitude is no longer infinitesimally small and so
nonlinear effects cannot be ignored.

In fact, the effect of boundary-layer growth on the disturbance can be deduced
immediately from the scaling (2.11a). Experimental studies show that the physi-
cal wavenumber a remains fixed as the Görtler vortices move downstream. In the
downstream direction x increases and since m − 1 < 0, â must also increase. Thus,
as mentioned above, the disturbance approaches a neutral state corresponding to a
location on the left-hand branch of the neutral curve, but first it enters a weakly
nonlinear regime located just to the left of the left-hand branch. However, since the
disturbance is moving towards a neutral state (rather than away from one as as-
sumed in the traditional Stuart–Watson–Landau type theory), the supercriticality
is relatively large and so the weakly nonlinear analysis must consider a so-called
non-equilibrium (i.e. x-dependent) critical-layer. It is found that ν < − 1

2 for the
inviscid-Görtler-vortex neutral modes being studied here (see figure 3). Thus, based
on the work of Blackaby et al. (1993) we can deduce that there are three possible non-
linear, integro-differential evolution equations for the non-equilibrium critical-layer
regime: (i) one where the cubic-nonlinearity is directly due to viscous effects; (ii)
another where the cubic-nonlinearity is due to supercriticality effects (i.e. because
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Figure 3. The values of ν for the left-hand branch of the neutral curve of the first Görtler mode.

the flow quantities are slightly away from their neutral values); and (iii), another
where the nonlinearity is quintic.

Finally in this section, let us return to a discussion of figure 2; note that, as well
as the neutral curve for the fundamental of the first inviscid Görtler mode (corre-
sponding to the mode studied by Bassom & Hall (1991)), neutral curves have also
been shown for the second and third harmonics of the first mode. To avoid confu-
sion, it is important to note that the neutral curve for the second harmonic (say)
is not the same as the neutral curve for the second mode as presented in figure 1
of Blackaby & Choudhari (1993). In the context of figure 2 and this discussion, the
second and third harmonics are defined as solutions of (2.8), (2.12) with a replaced
by 2a and 3a respectively (and similarly for β); nonlinear effects are neglected here
as the disturbances are assumed to be sufficiently small. The physical motivation
behind considering such higher harmonics is that, in any practical flow, the recep-
tivity mechanisms responsible for the initiation of the disturbances will result in all
harmonics of the first mode being generated (and hence present) in the flow. Thus,
it is important to check that our problem is a sensible one to be studying (i.e. we
must check that there are not more unstable/dangerous disturbances also present in
the flow); the neutral curves presented in figure 2 reassure us that our problem is a
sensible one to be considering. This is because the figure illustrates that, in the neigh-
bourhood to the left of the left-hand branch of the neutral curve for the fundamental,
the higher harmonics (even if they still exist to the right of their own neutral curves)
are stable or, at worse, marginally unstable i.e. at the location under consideration
in this study, the fundamental being considered has a comparable or larger growth
rate than other disturbances which may be present in the flow. Similarly, figure 1
of Blackaby & Choudhari (1993) assures us that the fundamental of the first mode
is at least as unstable as the higher modes at the location under consideration in
this study. Moreover, it should be noted that, since the initial generation of distur-
bances will occur to the left of the neutral curves, the higher modes and harmonics
would have evolved through their own nonlinear regimes (in the neighbourhood of
the left-hand branches of their own neutral curves) and stable regimes; thus, there is
no guarantee that these modes will still be present in the flow at the location under
consideration in this study. This discussion is motivated by the recent conference
paper by Timoshin (1996).
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3. The nonlinear problem: the flow outside of the critical layer

In order to derive the desired evolution equations a study of the fundamental and
other higher harmonics is necessary both inside and outside of the critical layer.
The details of this study are dependent on the flow under consideration but the
method is quite general and can be applied to other flows (the reader will note many
similarities between the next two sections and the corresponding analysis in Blackaby
et al. (1993) for the stratified shear layer problem where some aspects are discussed
in more detail). In this section we consider the flow outside the critical layer while
the following two sections are devoted to the flow inside the critical layer.

(a ) Scales and notation
First, let us consider for a moment the various x-scales present in the current

problem. In the analysis, it is necessary to consider three further x-scales, in addition
to the boundary layer variable, x, such that the streamwise derivative has the form,

∂

∂x
=

∂

∂x
+ µ−1 ∂

∂x1
+G1/2µ

∂

∂X̃
+G1/2 ∂

∂X
, (3.1)

where
(i) X is the fast scale implicit in the expansions (2.6) and is necessary for the

derivation of the governing equation (2.8);
(ii) X̃ is a slower scale, over which the disturbance amplitude grows (µ is a small

parameter which measures the size of the growth rate);
(iii) x1 is the slowest of these three scales (provided G−1/4 � µ), over which the

mean flow varies.
Now, let us consider the notation used in this paper. The length of many of the

equations in the critical-layer analysis necessitates that we use as much abbreviated
notation as possible. In particular, the real functions q0, q1 and q2 are defined by

iq0 = βu0 + ia0λ0w0, (3.2 a)
iq1 = βu1 + ia0(λ1w0 + λ0w1) + ia1λ0w0, (3.2 b)
iq2 = βu2 + ia0(λ2w0 + λ1w1 + λ0w2) + ia1(λ1w0 + λ0w1) + ia2λ0w0, (3.2 c)

where, for instance, u0 = u(x0), with u given by equation (2.9) and x0 being the
x-location under consideration. Note that the critical layer is located, at Y = Yc,
where q0 = 0 (i.e. where equation (2.8) is singular). Also u1, u2, w1, w2, λ1 and λ2
are real functions of x1 and arise from Taylor-series expansions of the quantities, for
small x1, about the location x = x0; for example

u1 = x1u0x(x0) and λ2 = x2
1λ0xx(x0)/2. (3.3)

Similarly the perturbation to the curvature, K1, and to the spanwise wavenumber,
a1, are real functions of x1. Henceforth, dashes on mean flow quantities shall denote
derivatives with respect to Y . It is also implicit that all of the mean flow quantities
which occur in the critical layer analysis (§3 c, §4, §5 and §6) are their values
evaluated at the critical layer. We shall not explicitly write a subscript c to denote
this.

(b ) Formulation and the solvability condition
As indicated in the previous section, inviscid Görtler vortices arise in boundary-

layer flows, over concave surfaces, at large values of the Reynolds number (Re) and
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Görtler number (G). In the rest of this paper, it is assumed that Re� G� 1. The
linear problem has been extensively studied for several different flows; in this study
we (begin to) address the so-called nonlinear problem, i.e. how do the growing inviscid
Görtler vortices (based on linear theory) behave/evolve when nonlinear effects are
physically important (and hence included in the mathematical analysis)?

The aim of the nonlinear problem/analysis is to derive an evolution equation which
governs the subsequent amplitude of the vortex disturbance (recall that the linear
problem does not fix this amplitude, instead it is merely assumed that the distur-
bance is infinitesimally small). As typical in such nonlinear-critical-layer studies, the
evolution equation arises by matching a so-called nonlinear jump (stemming from
the analysis of the critical-layer region itself) with a so-called solvability condition
which stems from a study of the flow away from the critical-layer. Thus, the aim of
this section is to derive the solvability condition; to do so requires studying addi-
tional terms in the asymptotic expansions of the velocity and pressure disturbances
(rather than just the largest fundamental) and it is therefore sensible to spend a few
moments considering the formulation.

The total flow (i.e. the three-dimensional boundary-layer flow plus the inviscid-
vortex disturbance) is written

u = u∗∞(u,Re−1/2v,Re−1/2G1/2λw)
+u∗∞(U,Re−1/2G1/2V,Re−1/2G1/2W ),

p = p+Re−1GP.

 (3.4)

Then, the vortex components of the total flow are expanded as a sum of their har-
monics, e.g. the normal component of the disturbance is written

V (x, Y, Z) =
∞∑

l=−∞
Vl(x0, X̃, Y ) exp{l(βX + iaZ)}, (3.5)

with similar expansions for U , W and P ; note that l denotes the harmonic. In the
analysis, is necessary to consider, in particular, the fundamental (l = ±1), zeroth
(l = 0) and second harmonic (l = ±2) terms. In fact, the fundamental is expanded
as

V1 = εV
(1)

1 + εµV
(2)

1 + . . . ; (3.6 a)
the zeroth and second harmonics are expanded as

V0 = ε2V
(1)

0 + . . . , V2 = ε2V
(1)

2 + . . . , (3.6 b)

together with similar expansions for Ul, Wl and Pl.
Let us consider the terms in the expansion of the fundamental V1; we note that

V
(1)

1 corresponds to the neutral mode of the inviscid linear problem, while V (2)
1 is

the correction to account for the X̃-dependence of the solution. Thus V (1)
1 satisfies

L1V
(1)

1 = 0; V
(1)

1 (0) = 0, V
(1)

1 → 0 as Y →∞, (3.7)

where

Ll ≡ ∂2

∂Y 2 − l2a2
0 −

q′′0
q0

+ J0

(
q′0
q0

)2

with J0(x0, Y ) = −a
2
0K0u0u

′
0

q
′2
0

. (3.8)

In fact, for definiteness, we write

V
(1)

1 = B±(X̃)Va(Y ), (3.9 a)
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where the amplitude B(X̃) is the function whose properties/evolution are the goal of
our analysis, while the normalized eigenfunction Va(Y ) satisfies (3.8) together with
the property that

Va(Y ) = |Y − Yc|1/2+ν + . . . as (Y − Yc)→ 0. (3.9 b)

The + and − signs on B denote, respectively, above and below the critical layer.
The second term in the expansion of V1 satisfies the equation

L1V
(2)

1 = Q1, (3.10)

subject to the boundary conditions V (2)
1 (Y = 0) = 0 and V

(2)
1 → 0 as Y → ∞. The

function Q1 can be written

Q1 = Q11V
(1)

1 +Q12V
(1)

1X̃
, (3.11 a)

where

Q11 = 2a0a1 +
q′′1
q0
− q1q

′′
0

q2
0
− J0

(
2
a1

a0
+
u′1
u′0

+
u1

u0
+
K1

K0
− 2

q1

q0

)
q
′2
0

q2
0
, (3.11 b)

Q12 =
iu0

q0

(
q′′0
q0
− u′′0
u0
− 2J0

q
′2
0

q2
0

)
. (3.11 c)

The solution to this equation can be considered to be the sum,

V
(2)

1 = V
(2)

1PI + V
(2)

1CF ,

of a particular integral, V (2)
1PI , and the complementary function, V (2)

1CF . As Y −Yc → 0,

V
(2)

1CF = B±a
(2)
1±|Y − Yc|1/2+ν(1 +O(|Y − Yc|−1))

+B±b
(2)
1±|Y − Yc|1/2−ν(1 +O(|Y − Yc|−1)), (3.12)

where a(2)
1± and b

(2)
1± are constants as yet undetermined. Note that if the Frobenius

roots, 1
2 ± |ν| differ by an integer then equation (3.12) is no longer appropriate (loga-

rithms are needed). As such cases (ν = 1
2m; m an integer) are isolated, we choose not

to concern ourselves with them (and their immediate neighbourhood) in this paper.
A solvability condition for the above boundary-value problem is required. Note

that: (i) the operator L1 is self-adjoint away from the critical level Y = Yc (where
q0 = 0), and (ii) the right-hand side of (3.10) is singular at Y = Yc. Following the
method of Hickernell (1984), the solvability condition is derived by multiplying both
sides of equation (3.10) by V (1)

1 and integrating over all Y , excluding the (sole) critical
layer at Y = Yc. After integrating by parts; imposing the boundary conditions at
Y = 0,∞; and the asymptotic forms of V (1)

1 and V
(2)

1CF as Y → Yc, it follows that

−
∫ ∞

0
V

(1)
1 Q1 dY = −[V (1)

1 V
(2)′

1CF − V (1)′

1 V
(2)

1CF ]Yc+
Yc− = 2νB2(b(2)

1+ − i−4νb
(2)
1−), (3.13)

where the barred integral signs denote the finite parts of these integrals and we have
used the relationships B− = i−1−2νB+, B+ ≡ B (see §4 a). After substituting for
Q1, the solvability condition can be written

(I3 − i−4νI1)
∂B

∂X̃
+ (I4 − i−4νI2)B = 2νB(b(2)

1+ − i−4νb
(2)
1−), (3.14)
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where I1, I2, I3 and I4 are defined as follows:

I1 = −
∫ Yc

0
Q12V

2
a dY, (3.15 a)

I2 = −
∫ Yc

0
Q11V

2
a dY, (3.15 b)

I3 = −
∫ ∞
Yc

Q12V
2
a dY, (3.15 c)

I4 = −
∫ ∞
Yc

Q11V
2
a dY. (3.15 d)

These integrals need to be evaluated numerically. In order to identify the singular
parts close to the critical layer, we substitute in the known asymptotic forms of the
integrands and integrate by parts.

(c ) The asymptotic expansions as (Y − Yc)→ 0
In terms of the critical layer variable η = µ−1(Y − Yc), the asymptotes for V and

Φ, as (Y − Yc)→ 0, where the function Φ is given by

Φl = Vl − 2la2
0

(1− 2ν)iq′0
Pl, (3.16)

(l denotes the harmonic), for the fundamental, zeroth and second harmonics are

V1 = εµ1/2+ν(B±|η|1/2+ν + . . .)

+εµ3/2+ν
(
B±|η|3/2+ν

[
q′′0

q′0(1 + 2ν)
+

(1− 2ν)
4

(
q′′0
q′0
− u′′0
u′0
− u′0
u0

)]
+B±a

(2)
1±|η|1/2+ν + . . .

)
+ εµ3/2−νB±|η|1/2−νb(2)

1± + . . . , (3.17 a)

Φ1 = εµ1/2+ν .0 + εµ3/2+ν
(
B±|η|3/2+ν

[
q′′0

(1 + 2ν)q′0
− u′′0

2u′0
− u′0

2u0

])
−εµ3/2−ν |η|1/2−νb(2)

1±B±
4ν

(1− 2ν)
+ . . . , (3.17 b)

V0 = ε2µ−1+2ν .0 + . . . , (3.18)

V2 = ε2µ−1+2ν
(

i(1 + 2ν)
q′0(3− 2ν)

B2
±|η|−1+2ν + . . .

)
+ . . . , (3.19 a)

Φ2 = ε2µ−1+2ν .0 + . . . . (3.19 b)

Note that the coefficient of the leading terms in the Φ1, V0 and Φ2 expansions are
all zero; this is a consequence of the property that the neutral eigenfunctions of (2.8)
are proportional to just one of the associated Frobenius solutions near the critical
layer (Blackaby & Choudhari 1993; Miles 1961).
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4. The critical layer

The main purpose of this section is to derive a second relation between b
(2)
1+ and

b
(2)
1− (the first being given by the solvability condition derived in the last section,

equation (3.14)) in order to obtain the desired nonlinear evolution equation.
On writing

u = u∗∞(u,Re−1/2v,Re−1/2G1/2λw)
+u∗∞(µ−1Û , Re−1/2G1/2V̂ , Re−1/2G1/2µ−1Ŵ ),

p = p+Re−1GP̂ ,

 (4.1)

where Û , V̂ , Ŵ and P̂ are functions of X, X̃, Z and the critical-layer normal variable

η = µ−1(Y − Yc), (4.2)

the governing equations for the vortex disturbance in the critical layer can be written

βlÛ + V̂η + ia0lŴ = −µ(ÛX̃ + ia1lŴ ), (4.3 a)

u0ÛX̃ + i(q′0η + q1)lÛ + u′0V̂ = −µ−2(Û ÛX + µÛÛX̃ + V̂ Ûη + Ŵ ÛZ)

−µ({u′0η + u1}ÛX̃ + i{ 1
2q
′′
0η

2 + q′1η + q2}lÛ
+{u′′0η + u′1}V̂ ) +G−1/2µ−3Ûηη, (4.3 b)

K0u0Û + P̂η = −µ−1K0Û
2/2− µ(K0u

′
0η +K1u0 +K0u1)Û , (4.3 c)

u0ŴX̃ + i(q′0η + q1)lŴ + λ0w
′
0V̂ + ia0lP̂ = −µ−2(ÛŴX + µÛŴX̃ + V̂ Ŵη + ŴŴZ)

−µ({u′0η + u1}ŴX̃ + i{ 1
2q
′′
0η

2 + q′1η + q2}lŴ
+{λ0w

′′
0η + λ1w

′
0 + λ0w

′
1}V̂ + ia1lP̂ ) +G−1/2µ−3Ŵηη, (4.3 d)

where we have retained on the right-hand sides the leading order effects due to non-
linearity, viscosity and terms leading to a perturbation of the generalized Richardson
number of Blackaby & Choudhari (1993), see equation (2.13). Recall that dashes on
mean flow quantities denote derivatives with respect to Y ; moreover, it is implicit
that all of the mean flow quantities which occur here and later in the critical layer
analysis actually correspond to their values evaluated at the critical layer, i.e. to
simplify the notation we omit the subscript ‘c’ on mean flow quantities.

In this section we shall solve the governing equations for the relevant higher order
terms of the harmonics. As suggested by the work of Blackaby et al. (1993) we con-
sider in this initial work two evolution equations; one where the cubic-nonlinearity
is due to supercriticality (non-neutrality) effects, and another where the cubic-
nonlinearity it is directly due to viscous effects. In this section we shall concentrate
on deriving the first of these (the equivalent of the so-called J1-cubic of the previous
paper). In order to do this it is helpful to introduce the operator

N̂l,χ =
(
u0

∂

∂X̃
+ il(q′0η + q1)

)
∂

∂η
− ilχq′0, (4.4)

where l again denotes the harmonic. We have assumed that G−1/2µ−3 � 1, i.e. that
viscous effects are not large enough to affect the operator, N̂l,χ, at leading order.
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The solution for the vortex-flow inside the critical layer is also constructed in the
form of a Fourier series, i.e. the normal component of the velocity is written:

V̂ (x0, X, X̃, η, Z) =
∞∑

l=−∞
V̂l(x0, X̃, η) exp{l(βX + iaZ)}, (4.5)

and the fundamental, zeroth and second harmonics, respectively, are then expanded
as asymptotic series:

V̂1 = εµ1/2+ν V̂
(1)

1 + . . .+ ε3µ−5/2+3ν V̂
(2)

1 + . . .+ εµ3/2+ν V̂
(3a)

1 + . . .

+εµ3/2−ν V̂ (3b)
1 + . . .+ ε3µ−3/2+3ν V̂

(4)
1 + . . . , (4.6 a)

V̂0 = ε2µ−1+2ν V̂
(1)

0 + . . .+ ε2µ2ν V̂
(2)

0 + . . . , (4.6 b)

V̂2 = ε2µ−1+2ν V̂
(1)

2 + . . .+ ε2µ2ν V̂
(2)

2 + . . . , (4.6 c)

and similarly for Û , Ŵ , P̂ and the important functions

Φ̂l = V̂l − 2la2
0

(1− 2ν)iq′0
P̂l. (4.7)

These expansions are not necessarily completely ordered (depending on the relative
sizes of ε and µ) and moreover we have only retained the terms necessary for deriving
the desired evolution equation. The scalings follow directly from the outer asymptotes
and/or by considering the process of harmonic generation.

(a ) O(εµ1/2+ν) of the fundamental
At this order the governing equations are

βÛ
(1)
1 + V̂

(1)
1η + ia0Ŵ

(1)
1 = 0, (4.8 a)

u0Û
(1)
1X̃

+ i(q′0η + q1)Û (1)
1 + u′0V̂

(1)
1 = 0, (4.8 b)

K0u0Û
(1)
1 + P̂

(1)
1η = 0, (4.8 c)

u0Ŵ
(1)
1X̃

+ i(q′0η + q1)Ŵ (1)
1 + λ0w

′
0V̂

(1)
1 + ia0P̂

(1)
1 = 0; (4.8 d)

these can be manipulated to give

N̂1,1/2+ν V̂
(1)

1 = 1
2(1− 2ν)iq′0Φ̂(1)

1 , N̂1,1/2−νΦ̂(1)
1 = 0, (4.9)

with solutions (which match to the corresponding outer solutions)

V̂
(1)

1 (X̃, η) =
(1 + 2ν)i3/2−ν

2Γ( 1
2 − ν)

(
u0

q′0

)1/2+ν

×
∫ ∞

0
dx1B(X̃ − x1)x−3/2−ν

1 exp{−ix1(q′0η + q1)/u0}, (4.10 a)

Φ̂(1)
1 (X̃, η) = 0. (4.10 b)

A detailed discussion of the solution of equations of the type (4.9a, b) can be found
in the studies of Churilov & Shukhman (1988) and Dando (1993). Note, however,
that since ν < − 1

2 for the inviscid Görtler problem, there is no need to evaluate the
integral occurring in expression (4.10) around a complex contour (cf. the stratified
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shear-flow problem). The function V̂ (1)
1 (X̃, η) has a single asymptotic representation

in the lower-half plane (−π 6 arg η 6 0)

V̂
(1)

1 (X̃, η) = B(X̃)η1/2+ν +O(η−1/2+ν) as |η| → ∞, (4.11)

and matching with the outer asymptote (3.17a) fixes

B+(X̃) ≡ B(X̃) and B−(X̃) = i−1−2νB(X̃). (4.12)

Later we shall derive evolution equations for the amplitude, B(X̃), but for the
moment we can regard it as an arbitrary function that satisfies the requirement
B(X̃) → 0 as X̃ → −∞. This requirement is consistent with the initial condition
used for our evolution equation (see §6), which itself is a result of insisting that the
solution of the evolution equation matches to an ‘earlier’ linear stage.

(b ) O(ε2µ−1+2ν) of the second harmonic
At this order, equations (4.3 a)–(4.3 d) yield

2βÛ (1)
2 + V̂

(1)
2η + 2ia0Ŵ

(1)
2 = 0, (4.13 a)

u0Û
(1)
2X̃

+2i(q′0η+q1)Û (1)
2 +u′0V̂

(1)
2 = −(βÛ (1)

1 Û
(1)
1 + V̂ (1)

1 Û
(1)
1η +ia0Ŵ

(1)
1 Û

(1)
1 ), (4.13 b)

K0u0Û
(1)
2 + P̂

(1)
2η = 0, (4.13 c)

u0Ŵ
(1)
2X̃

+ 2i(q′0η + q1)Ŵ (1)
2 + λ0w

′
0V̂

(1)
2 + ia0P̂

(1)
2

= −(βÛ (1)
1 Ŵ

(1)
1 + V̂

(1)
1 Ŵ

(1)
1η + ia0Ŵ

(1)
1 Ŵ

(1)
1 ), (4.13 d)

from which it can be shown that V̂ (1)
2 and Φ̂(1)

2 satisfy

N̂2,1/2+ν V̂
(1)

2 = (1− 2ν)iq′0Φ̂(1)
2 + 2(V̂ (1)

1η V̂
(1)

1η − V̂ (1)
1 V̂

(1)
1ηη), N̂2,1/2−νΦ̂(1)

2 = 0.
(4.14 a, b)

Since the right-hand sides of (4.14 a, b) do not involve the conjugate of V̂ (1)
1 , it

follows that V̂ (1)
2 and Φ̂(1)

2 have unique asymptotic representations as |η| → ∞ (in
the lower half plane of complex η). The solutions of these equations, which match to
the corresponding solutions outside of the critical layer, are

V̂
(1)

2 =
i−2ν(1 + 2ν)2

4u0Γ2( 1
2 − ν)

(
u0

q′0

)2ν∫ ∞
0

dx̃3

∫ ∞
0

dx̃1

∫ ∞
0

dx̃2B(X̃ − x̃3 − x̃1)B(X̃ − x̃3 − x̃2)

×(x̃1x̃2)−3/2−ν(x̃1 − x̃2)2(x̃1 + x̃2)1/2+ν(2x̃3 + x̃1 + x̃2)−3/2−ν

× exp{−i(2x̃3 + x̃1 + x̃2)(q′0η + q1)/u0}, (4.15 a)

Φ̂(1)
2 = 0; (4.15 b)

(again, see Churilov & Shukhman (1988) and Dando (1993) for a discussion of the
solution of equations like (4.14a) which have a non-zero right-hand side).

(c ) O(ε2µ−1+2ν) of the zeroth harmonic
At this order, the governing equations for the zeroth harmonic are

V̂
(1)

0η = 0, (4.16 a)

u0Û
(1)
0X̃

+ u′0V̂
(1)

0 = −(V̂ (1)
1 Û

(1)
−1η + V̂

(1)
−1 Û

(1)
1η − ia0Ŵ

(1)
1 Û

(1)
−1 + ia0Ŵ

(1)
−1 Û

(1)
1 ), (4.16 b)
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K0u0Û
(1)
0 + P̂

(1)
0η = 0, (4.16 c)

u0Ŵ
(1)
0X̃

+ λ0w
′
0V̂

(1)
0 = −(−βÛ (1)

1 Ŵ
(1)
−1 + βÛ

(1)
−1 Ŵ

(1)
1 + V̂

(1)
1 Ŵ

(1)
−1η + V̂

(1)
−1 Ŵ

(1)
1η ),

(4.16 d)

where the notation V̂ (1)
−1 , for example, denotes the complex conjugate of V̂ (1)

1 . These
can be solved to give

Û
(1)
0 =

4u′0
q
′2
0 (1 + 2ν)2

(V̂ (1)
1η V̂

(1)
−1η)η, (4.17 a)

V̂
(1)

0 = 0, (4.17 b)

Ŵ
(1)
0 =

i
a0

(
β − (1 + 2ν)iq′0

2u′0

)
Û

(1)
0 . (4.17 c)

(d ) O(ε3µ−5/2+3ν) of the fundamental
At this order the largest nonlinear term emerges; in fact, in many critical-layer

problems the desired nonlinear-jump would be found at this stage. However, here,
the four governing equations are

βÛ
(2)
1 + V̂

(2)
1η + ia0Ŵ

(2)
1 = 0, (4.18 a)

u0Û
(2)
1X̃

+ i(q′0η + q1)Û (2)
1 + u′0V̂

(2)
1

= −(βÛ (1)
2 Û

(1)
−1 + βÛ

(1)
0 Û

(1)
1 + V̂

(1)
2 Û

(1)
−1η + V̂

(1)
−1 Û

(1)
2η + V̂

(1)
1 Û

(1)
0η

+V̂ (1)
0 Û

(1)
1η − ia0Ŵ

(1)
2 Û

(1)
−1 + 2ia0Ŵ

(1)
−1 Û

(1)
2 + ia0Ŵ

(1)
0 Û

(1)
1 ), (4.18 b)

K0u0Û
(2)
1 + P̂

(2)
1η = 0, (4.18 c)

u0Ŵ
(2)
1X̃

+ i(q′0η + q1)Ŵ (2)
1 + λ0w

′
0V̂

(2)
1 + iaP̂ (2)

1

= −(−βÛ (1)
2 Ŵ

(1)
−1 + 2βÛ (1)

−1 Ŵ
(1)
2 + βÛ

(1)
0 Ŵ

(1)
1 + V̂

(1)
2 Ŵ

(1)
−1η + V̂

(1)
−1 Ŵ

(1)
2η

+V̂ (1)
1 Ŵ

(1)
0η + V̂

(1)
0 Ŵ

(1)
1η + ia0Ŵ

(1)
2 Ŵ

(1)
−1 + ia0Ŵ

(1)
0 Ŵ

(1)
1 ), (4.18 d)

from which it follows that V̂ (2)
1 and Φ̂(2)

1 satisfy

N̂1,1/2+ν V̂
(2)

1 = 1
2(1− 2ν)iq′0Φ̂(2)

1 − 1
2(V̂ (1)
−1 V̂

(1)
2η )η + V̂

(1)
2 V̂

(1)
−1ηη − V̂ (1)

0 V̂
(1)

1ηη

+
2i

q′0(1 + 2ν)
(V̂ (1)

1 (V̂ (1)
1 V̂

(1)
1η )ηη − V̂ (1)

1η (V̂ (1)
1 V̂

(1)
1η )η), (4.19 a)

N̂1,1/2−νΦ̂(2)
1 = 0. (4.19 b)

The solution of (4.19 b), which matches to the corresponding solution outside of the
critical layer, is

Φ̂(2)
1 = 0. (4.20)

The last result can be regarded as a consequence of the property that the neu-
tral eigenfunctions of (2.8) are proportional to just one of the associated Frobenius
solutions near the critical layer. Thus, no nonlinear jump in Φ̂1 arises at this order
and we must seek a nonlinear jump at higher orders (note that a non-zero cubic
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nonlinear-jump typically does appear at this stage in weakly nonlinear analysis).
However, here the lack of a nonlinear jump at this order is not surprising as the
same outcome is found in the associated study of disturbances in a stratified shear
flow (see Churilov & Shukhman (1988) and references therein). The fact that we
have to seek a nonlinear jump in Φ̂1 at higher orders in the critical-layer analysis
leads to the nonlinear critical-layer analysis being more involved/complicated than
one might otherwise expect. Moreover, it is found that there are three possible candi-
dates competing for the role of largest nonlinear jump in Φ̂1, corresponding to three
different evolution equations for the disturbance amplitude B(X̃), depending on the
relative sizes of the disturbance size ε, the criticality of the disturbance µ, and the
viscous-effects as characterized by the Görtler number G.

(e ) O(εµ3/2+ν) of the fundamental
At this order, terms on the right-hand sides of the governing equations due to the

perturbation of the ‘Richardson number’ first arise. However, the situation is much
more complicated than for the stratified shear flow case as instead of just perturbing
the Richardson number we now have to perturb the quantities in our generalized
Richardson number, equation (2.13). We also have X̃-derivatives of previous critical-
layer terms and higher order corrections to the base flow values appearing on the
right-hand sides. Neither of these two effects were present for the stratified shear layer
case considered in Blackaby et al. (1993) and they are a result of considering a spatial
as opposed to a temporal evolution problem. These effects combined with the need
to perturb u, w, a, λ and K, result in most equations and solutions in the present
critical-layer analysis being considerably more lengthy than their counterparts for
the stratified shear flow problem. Specifically, equations (4.3) give

βÛ
(3a)
1 + V̂

(3a)
1η + ia0Ŵ

(3a)
1 = −Û (1)

1X̃
− ia1Ŵ

(1)
1 , (4.21 a)

u0Û
(3a)
1X̃

+ i(q′0η + q1)Û (3a)
1 + u′0V̂

(3a)
1

= −[(u′0η + u1)Û (1)
1X̃

+ i(q′′0η
2/2 + q′1η + q2)Û (1)

1 + (u′′0η + u′1)V̂ (1)
1 ], (4.21 b)

K0u0Û
(3a)
1 + P̂

(3a)
1η = −(K0u

′
0η +K1u0 +K0u1)Û (1)

1 , (4.21 c)

u0Ŵ
(3a)
1X̃

+ i(q′0η + q1)Ŵ (3a)
1 + λ0w

′
0V̂

(3a)
1 + ia0P̂

(3a)
1

= −[(u′0η + u1)Ŵ (1)
1X̃

+ i(q′′0η
2/2 + q′1η + q2)Ŵ (1)

1

+(λ0w
′′
0η + λ1w

′
0 + λ0w

′
1)V̂ (1)

1 + ia1P̂
(1)
1 ]. (4.21 d)

These four equations lead to an equation for Φ̂(3a)
1 , namely

N̂1,1/2−νΦ̂(3a)
1 = u′0V̂

(1)
1X̃

+ iq′0(r(3a)
11 η + r

(3a)
10 )V̂ (1)

1 , (4.22 a)

where

r
(3a)
10 =

q′1
q′0
− (1 + 2ν)

2

(
u′1
u′0

+
u1

u0
+
K1

K0

)
− a1

a0
(1− 2ν), (4.22 b)

r
(3a)
11 =

q′′0
q′0
− (1 + 2ν)

2

(
u′′0
u′0

+
u′0
u0

)
, (4.22 c)
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with the solution

Φ̂(3a)
1 =

1
2νiq′0

(
u′0 −

u0r
(3a)
11

(1 + 2ν)

)
V̂

(1)
1X̃

+
r

(3a)
11

(1 + 2ν)
ηV̂

(1)
1 +

1
2ν

(
r

(3a)
10 −

q1r
(3a)
11

q′0(1 + 2ν)

)
V̂

(1)
1 .

(4.23)

(f ) O(εµ3/2−ν) of the fundamental
At this order, the governing equations yield

βÛ
(3b)
1 + V̂

(3b)
1η + ia0Ŵ

(3b)
1 = 0, (4.24 a)

u0Û
(3b)
1X̃

+ i(q′0η + q1)Û (3b)
1 + u′0V̂

(3b)
1 = 0, (4.24 b)

K0u0Û
(3b)
1 + P̂

(3b)
1η = 0, (4.24 c)

u0Ŵ
(3b)
1X̃

+ i(q′0η + q1)Ŵ (3b)
1 + λ0w

′
0V̂

(3b)
1 + ia0P̂

(3b)
1 = 0, (4.24 d)

from which it follows that

N̂1,1/2+ν V̂
(3b)

1 = 1
2(1− 2ν)iq′0Φ̂(3b)

1 and N̂1,1/2−νΦ̂(3b)
1 = 0, (4.25)

with solutions
V̂

(3b)
1 = 0 = Φ̂(3b)

1 . (4.26)
Thus there is no linear contribution to the evolution equation from inside the critical
layer; instead the linear contribution to the evolution equation solely arises from
outside the critical layer. Later we shall balance our selected nonlinear term with
this order and then derive our second relation involving b

(2)
1+ and b

(2)
1− by matching

with the outside asymptotes.

(g ) O(ε2µ2ν) of the second harmonic
At this order, the governing equations yield

2βÛ (2)
2 + V̂

(2)
2η + 2ia0Ŵ

(2)
2 = −Û (1)

2X̃
− 2ia1Ŵ

(1)
2 , (4.27 a)

u0Û
(2)
2X̃

+ 2i(q′0η + q1)Û (2)
2 + u′0V̂

(2)
2

= −[(u′0η + u1)Û (1)
2X̃

+ i(q′′0η
2 + 2q′1η + 2q2)Û (1)

2 + (u′′0η + u′1)V̂ (1)
2 ]

−[2βÛ (1)
1 Û

(3a)
1 + Û

(1)
1 Û

(1)
1X̃

+ V̂
(1)

1 Û
(3a)
1η + V̂

(3a)
1 Û

(1)
1η

+ia0Ŵ
(1)
1 Û

(3a)
1 + ia0Ŵ

(3a)
1 Û

(1)
1 ], (4.27 b)

K0u0Û
(2)
2 + P̂

(2)
2η = −1

2K0Û
(1)
1 Û

(1)
1 − (K0u

′
0η +K1u0 +K0u1)Û (1)

2 , (4.27 c)

u0Ŵ
(2)
2X̃

+ 2i(q′0η + q1)Ŵ (2)
2 + λ0w

′
0V̂

(2)
2 + 2ia0P̂

(2)
2

= −[(u′0η + u1)Ŵ (1)
2X̃

+ i(q′′0η
2 + 2q′1η + 2q2)Ŵ (1)

2

+(λ0w
′′
0η + λ1w

′
0 + λ0w

′
1)V̂ (1)

2 + 2ia1P̂
(1)
2 ]

−[βÛ (1)
1 Ŵ

(3a)
1 + βÛ

(3a)
1 Ŵ

(1)
1 + Û

(1)
1 Ŵ

(1)
1X̃

+ V̂
(1)

1 Ŵ
(3a)
1η

+V̂ (3a)
1 Ŵ

(1)
1η + 2ia0Ŵ

(1)
1 Ŵ

(3a)
1 ]. (4.27 d)
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It is only necessary to determine Φ̂(2)
2 for the analysis at the next order of the

fundamental; from the above four equations we find that

N̂2,1/2−νΦ̂(2)
2

= u′0V̂
(1)

2X̃
+ 2iq′0(r(3a)

11 η + r
(3a)
10 )V̂ (1)

2 + 2(V̂ (1)
1η Φ̂(3a)

1η − V̂ (1)
1 Φ̂(3a)

1ηη )

− 2u′0
(1 + 2ν)iq′0

(q′0η + q1)V̂ (1)
1η V̂

(1)
1η + 2

a1

a0

(
1− 2βu′0

(1 + 2ν)iq′0

)
(V̂ (1)

1η V̂
(1)

1η − V̂ (1)
1 V̂

(1)
1ηη)

+
2u′0

(1 + 2ν)iq′0
(2V̂ (1)

1η V̂
(1)

1ηX̃
− V̂ (1)

1X̃
V̂

(1)
1ηη + V̂

(1)
1 V̂

(1)
1ηηX̃

)− 2u′0
u0

V̂
(1)

1 V̂
(1)

1η , (4.28)

where the constants r(3a)
10 and r

(3a)
11 are defined by (4.22b, c). The solution for Φ̂(2)

2 is
given in Appendix A.

(h ) O(ε2µ2ν) of the zeroth harmonic
At this order, the governing equations are

V̂
(2)

0η = 0, (4.29 a)

u0Û
(2)
0X̃

+ u′0V̂
(2)

0 = −(u′0η + u1)Û (1)
0X̃
− (u′′0η + u′1)V̂ (1)

0 − 2(Û (1)
1 Û

(1)
−1 )X̃

−(Û (3a)
−1 V̂

(1)
1 + Û

(3a)
1 V̂

(1)
−1 + Û

(1)
−1 V̂

(3a)
1 + Û

(1)
1 V̂

(3a)
−1 )η

+
4u′0a1

(1 + 2ν)iq′0a0

(
1− 2βu′0

(1 + 2ν)iq′0

)
V̂ (1)
η V̂

(1)
−1η, (4.29 b)

K0u0Û
(2)
0 + P̂

(2)
0η = −(K0u

′
0η +K0u1 +K1u0)Û (1)

0 −K0Û
(1)
1 Û

(1)
−1 , (4.29 c)

u0Ŵ
(2)
0X̃

+ λ0w
′
0V̂

(2)
0 = −(u′0η + u1)Ŵ (1)

0X̃
− (λ0w

′′
0η + λ1w

′
0 + λ0w

′
1)V̂ (1)

0

−(Û (1)
1 Ŵ

(1)
−1 + Û

(1)
−1 Ŵ

(1)
1 )X̃

−(Ŵ (3a)
−1 V̂

(1)
1 + Ŵ

(3a)
1 V̂

(1)
−1 + Ŵ

(1)
−1 V̂

(3a)
1 + Ŵ

(1)
1 V̂

(3a)
−1 )η

−2ia1

a2
0

(
1− 2βu′0

(1 + 2ν)iq′0

)2

V̂
(1)

1η V̂
(1)
−1η. (4.29 d)

In the analysis of the next subsection, at order (ε3µ−3/2+3ν) of the fundamental, it
is sufficient to know the value of the quantity

(β − (1 + 2ν)iq′0/2u
′
0)Û (2)

0η + ia0Ŵ
(2)
0η , (4.30)

and from (4.29a–d) it can be shown that(
β− (1 + 2ν)iq′0

2u′0

)
Û

(2)
0η +ia0Ŵ

(2)
0η = − 1

ν(1 + 2ν)iq′0
((r(2)

01 η+r(2)
00 )V̂ (1)

1η V̂
(1)
−1η)ηη, (4.31 a)

where

r
(2)
00 = r

(3a)
10 − u′0q1

u0q
′
0

+ 2ν
(
u1

u0
+
K1

K0
− a1

a0

(
1− 2βu′0

(1 + 2ν)iq′0

)
− 2

(1 + 2ν)
u′0q1

u′0q1

)
,

(4.31 b)

r
(2)
01 = r

(3a)
11 +

(4ν2 − 2ν − 1)u′0
(1 + 2ν)u0

. (4.31 c)
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(i ) O(ε3µ−3/2+3ν) of the fundamental
It is at this order that the cubic nonlinear jump due to supercriticality (non-

neutrality) effects will arise. The governing equations (4.3a–d) eventually yield at
this order

N̂1,1/2+ν V̂
(4)

1 = 1
2(1− 2ν)iq′0Φ̂(4)

1 +R
(4)
1 , N̂1,1/2−νΦ̂(4)

1 = R
(4)
2 . (4.32)

It is convenient to write
R

(4)
2 = F

(2)
1 +R

(4)
3 , (4.33)

where F (2)
1 is a function proportional to V̂ (2)

1 while R(4)
3 is given explicitly by

R
(4)
3 =

u′0
(1 + 2ν)iq′0

[
4V̂ (1)

2 V̂
(1)
−1ηηX̃

− (V̂ (1)
2η V̂

(1)
−1X̃

)η − 1
2 V̂

(1)
−1 V̂

(1)
2ηηX̃

+ 2V̂ (1)
2X̃
V̂

(1)
−1ηη

+
4

(1 + 2ν)iq′0
(2V̂ (1)

1η (V̂ (1)
−1ηV̂

(1)
1η )ηX̃ − (V̂ (1)

1 (V̂ (1)
1η V̂

(1)
−1η)ηη)X̃ + V̂

(1)
1ηX̃

(V̂ (1)
−1ηV̂

(1)
1η )η)

]
+

2
(1 + 2ν)iq′0

(
u′0
u0
η +

u1

u0
+
K1

K0
− a1

a0
(1− 2βu′0/(1 + 2ν)iq′0)

)
V̂

(1)
1 (V̂ (1)

−1ηV̂
(1)

1η )ηη

+
2u′0

(1 + 2ν)iq′0u0

[
i(q′0η + q1)

(
2

(1 + 2ν)iq′0
V̂

(1)
1η (V̂ (1)

−1ηV̂
(1)

1η )η − 1
2 V̂

(1)
−1ηV̂

(1)
2η

)
+V̂ (1)

1η (V̂ (1)
−1 V̂

(1)
1η )η

]
+V̂ (1)

2 Φ̂(3a)
−1ηη − Φ̂(3a)

1η (βÛ (1)
0 + iaŴ (1)

0 )

+V̂ (1)
1 {(β − (1 + 2ν)iq′0/2u

′
0)Û (2)

0η + iaŴ (2)
0η }

− u′0
2u0

(V̂ (1)
2η V̂

(1)
−1 + 2V̂ (1)

−1ηV̂
(1)

2 ) + 1
2 V̂

(1)
2η Φ̂(3a)

−1η

−V̂ (1)
−1ηΦ̂(2)

2η − 1
2 V̂

(1)
−1 Φ̂(2)

2ηη. (4.34)

To derive an evolution equation the asymptotic representation of V̂ (4)
1 is needed.

This is

V̂
(4)

1 = C
(4)
± η1/2+ν +D

(4)
± η1/2−ν +O(η−1/2+ν) as η → ±∞, (4.35)

where, in particular, D(4)
+ −D(4)

− is given by

D
(4)
+ −D(4)

− = − i1/2−ν

2νu0Γ( 1
2 − ν)

(
q′0
u0

)1/2−ν

×
∫ ∞
−∞

dη
∫ ∞

0
dx̃4x̃

1/2−ν
4 R

(4)
3 (X̃ − x̃4, η) exp{−ix̃4(q′0η + q1)/u0}. (4.36)

It is convenient to split R(4)
3 into five parts:

D
(4)
+ −D(4)

− = (D(4)
+ −D(4)

− )00 + (D(4)
+ −D(4)

− )01 + (D(4)
+ −D(4)

− )20

+(D(4)
+ −D(4)

− )21 + (D(4)
+ −D(4)

− )22, (4.37)

where the terms on the right-hand side are defined in Appendix B. Matching the
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inner asymptote, (4.35), with the outer asymptote, (3.17a), leads to the relations,

D
(4)
+ = b

(2)
1+B+, D

(4)
− = i1−2νb

(2)
1−B−, (4.38)

which can be combined to give

D
(4)
+ −D(4)

− = B(b(2)
1+ − i−4νb

(2)
1−); (4.39)

thus a second relation between b
(2)
1+ and b

(2)
1− has been determined (the first being

given by the solvability condition (3.14)).

5. The cubic-nonlinearity due to viscosity

With the aim to derive an evolution equation with cubic-nonlinearity directly due
to viscous effects, it is necessary to consider some additional terms in the critical
layer analysis; in fact, instead of the expansions (4.6), it is necessary to consider

V̂1 = εµ1/2+ν V̂
(1)

1 + . . .+ ε3µ−5/2+3ν V̂
(2)

1 + . . .+ εµ3/2+ν V̂
(3a)

1 + . . .

+εµ3/2−ν V̂ (3b)
1 + . . .+ ε3µ−3/2+3ν V̂

(2)
1 + . . .

+εG−1/2µ−5/2+ν V̂
(5)

1 + . . .+ ε3G−1/2µ−11/2+3ν V̂
(6)

1 + . . . , (5.1 a)

V̂0 = ε2µ−1+2ν V̂
(1)

0 + . . .+ ε2µ2ν V̂
(2)

0 + . . .+ ε2G−1/2µ−4+2ν V̂
(3)

0 + . . . , (5.1 b)

V̂2 = ε2µ−1+2ν V̂
(1)

2 + . . .+ ε2µ2ν V̂
(2)

2 + . . .+ ε2G−1/2µ−4+2ν V̂
(3)

2 + . . . , (5.1 c)

with similar expansions for Û , Ŵ , P̂ and Φ̂.
One would expect to obtain this ‘viscous’ cubic nonlinearity from balancing the

nonlinear fundamental term occurring at O(ε3G−1/2µ−11/2+3ν) with the fundamen-
tal term occurring at O(εµ3/2−ν) and then matching with the solutions outside of
the critical-layer to provide a second relationship between b(2)

1+ and b(2)
1−. However, for

the problem being considered here (namely, that of inviscid Görtler vortices in an
incompressible three-dimensional boundary-layer) this proves fruitless. It is illustra-
tive to consider the governing equations for the fundamental in the critical layer, at
O(εG−1/2µ−5/2+ν), where viscous terms first appear on the right-hand sides. These
are

βÛ
(5)
1 + V̂

(5)
1η + ia0Ŵ

(5)
1 = 0, (5.2 a)

u0Û
(5)
1X̃

+ i(q′0η + q1)Û (5)
1 + u′0V̂

(5)
1 = Û

(1)
1ηη, (5.2 b)

K0u0Û
(5)
1 + P̂

(5)
1η = 0, (5.2 c)

u0Ŵ
(5)
1X̃

+ i(q′0η + q1)Ŵ (5)
1 + λ0w

′
0V̂

(5)
1 + ia0P̂

(5)
1 = Ŵ

(1)
1ηη, (5.2 d)

which, in particular, lead to the equation

N̂1,1/2−νΦ̂(5)
1 = 0, (5.3)

with solution
Φ̂(5)

1 = 0. (5.4)
Basically, this result is due to the symmetry of the governing equations (5.2a–

d) at this order; in particular, is is essentially due to the fact that the ‘viscous’
terms on the right-hand sides of (5.2b, d) both have the same coefficient (namely
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‘one’). This symmetry can be broken in the associated problem for stratified shear-
flows by a choice of a non-unity Prandtl number (see Churilov & Shukhman 1988;
Dando 1996). However, since here we are considering an incompressible flow, the
energy equation does not enter into the problem and hence neither does the Prandtl
number, i.e. whatever the value of the Prandtl number of the flow, Φ̂(5)

1 is still zero
since the Prandtl number cannot break the symmetry of equations (5.2a–d).

Thus, there is no evolution equation, with cubic-nonlinearity directly due to vis-
cous effects, for this problem. Note, however, that viscosity (actually manifested here
by the Görtler number G; since the inviscid limit corresponds to G � 1) still plays
an important role in this study since it’s value will determine/limit the range of
applicability/validity of our final evolution equations. In fact, if the supercriticality
of the disturbance falls below a certain size (namely µ < G−1/6), then the critical
layer is dominated by viscous effects and the non-equilibrium critical-layer theory
employed here is not (directly) relevant. Also, the magnitude of viscous effects (as
characterized/measured by the value of G relative to µ) determines whether the
linear term in the evolution equations is proportional to X̃ or not.

6. The evolution equation

Recalling that the cubic-nonlinearity directly due to viscous effects does not arise
for the problem under consideration, the evolution equation can be written in ‘com-
posite’ form

(I3 − i−4νI1)
∂B

∂X̃
+ (I4 − i−4νI2)B

= 2νB{ε2µ−3+4ν(b(2)
1+ − i−4νb

(2)
1−)sc + ε4µ−7+6ν(b(2)

1+ − i−4νb
(2)
1−)q}, (6.1)

where (b(2)
1+ − i−4νb

(2)
1−)sc denotes the nonlinear part of the jump due to supercriticality

effects (calculated in §4), while (b(2)
1+ − i−4νb

(2)
1−)q denotes the total part of the jump

due to the quintic nonlinearity. An expression for (b(2)
1+ − i−4νb

(2)
1−)q can be derived

in a similar manner to that in which the corresponding term was calculated in the
stratified-shear layer studies of Churilov & Shukhman (1988) and Blackaby et al.
(1993). However, since this would be an extremely long and complicated task for
the present problem, for the moment instead we shall concentrate on obtaining some
numerical results for the cubic evolution equation (which will also determine how
relevant the quintic nonlinearity is). Note that the evolution equation (6.1), and other
forms of it appearing later in this section, is valid provided µ � G−1/4; for smaller
values of supercriticality, the non-parallelism of the underlying flow is significant and
the linear term will include the additional factor X̃ (see, for instance, the amplitude
equations (4.1a, b) in the paper of Hall & Smith (1984)).

In figure 4 we show the regions of influence of the nonlinear terms in the ampli-
tude equation (6.1). The cubic-nonlinearity due to supercriticality effects becomes
important when the amplitude of the disturbance ε = µ3/2−2ν (when the cubic term
is as large as the linear terms in the evolution equation, 6.1). The quintic term is
of the same size as the cubic term when ε = µ2−ν (� µ3/2−2ν ; since µ is small and
ν < −1/2 for the neutral, inviscid Görtler modes). Thus, if the evolution equation
just containing the cubic nonlinearity leads to a sufficient increase in the amplitude
of the disturbance, the quintic nonlinear term will become the dominant term in the
‘composite’ evolution equation (6.1).
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Figure 4. A diagram of the various regimes of the critical layer. I, viscous, steady critical layer;
Landau–Stuart–Watson theory; II, strongly nonlinear, equilibrium critical layer; Benney & Berg-
eron theory. IIIa, unsteady critical layer; largest nonlinear term in (6.1) is the cubic one due to
supercriticality effects; IIIb, unsteady critical layer; largest nonlinear term in (6.1) is the quin-
tic one. Solid lines represent boundaries with areas where the critical layers are not unsteady,
dashed lines represent boundaries between different base evolution equations from (6.1) and the
dotted lines indicate the threshold values at which the nonlinear evolution equations become
valid. The thick line on the diagram indicates the predicted evolutionary path of the disturbance
for small values of the crossflow parameter.

(a ) Numerical results for the equation with cubic nonlinearity
Let us now concentrate on obtaining numerical results for the amplitude equation

with only the the cubic-nonlinearity present. To ease numerical calculations, the
jump expression D

(4)
+ −D(4)

− is rewritten in so-called kernel form

D
(4)
+ −D(4)

− =
i1−2ν(1 + 2ν)2

4ν u2
0Γ2( 1

2 − ν)

(
q′0
u0

)1−4ν ∫ ∞
0

ds s1−4ν
∫ 1

0
dσ

×{B(X̃ − s)B(X̃ − σs)B(X̃ − (1 + σ)s)(sG1(σ) +G2(σ)

+BX̃(X̃ − s)B(X̃ − σs)B(X̃ − (1 + σ)s)sG3(σ)

+B(X̃ − s)BX̃(X̃ − σs)B(X̃ − (1 + σ)s)sG4(σ)

+B(X̃ − s)B(X̃ − σs)BX̃(X̃ − (1 + σ)s)sG5(σ)}, (6.2)

where the kernel functions G1(σ),. . . ,G5(σ) are defined in Appendix C. An inspection
of this kernel representation shows that things are considerably more complicated
than for the corresponding temporal, stratified-shear flow problem. The nonlinear-
jump is complex (i.e. it has real and imaginary parts) and there are cubic nonlinear
terms containing X̃-derivatives. The occurrence of spatial derivatives of the ampli-
tude function in the nonlinear terms of the evolution equation is a relatively novel
feature for non-equilibrium critical-layer studies. Previously, such streamwise deriva-
tives have only been seen in the study of Churilov & Shukhman (1994), concerning the
spatial evolution of helical disturbances to an axial jet; while spanwise derivatives of
the amplitude function in the nonlinear term arise in the evolution equations derived
by Wu (1993), concerning the temporal-spatial modulation of near-planar Rayleigh
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Figure 5. The amplitude of b(x̃) for λ0 = 25.

waves in shear flows, and Gajjar (1995), concerning stationary crossflow vortices in
fully three-dimensional boundary layers. As with the work of Churilov & Shukhman
(1994), the inclusion of these nonlinear spatial derivative terms is wholly associated
with the spatial formulation of the problem; note that there were no equivalent terms
in the related temporal stability study for stratified shear layers.

Formally setting ε = µ3/2−2ν and using the relations (4.39), (6.2) to substitute for
(b(2)

1+ − i−4νb
(2)
1−)sc in equation (6.1), leads to the evolution equation

∂B

∂X̃
= γ1B + γ2

∫ ∞
0

ds s1−4ν
∫ 1

0
dσ

×{B(X̃ − s)B(X̃ − σs)B(X̃ − (1 + σ)s)(sG1(σ) +G2(σ)

+BX̃(X̃ − s)B(X̃ − σs)B(X̃ − (1 + σ)s)sG3(σ)

+B(X̃ − s)BX̃(X̃ − σs)B(X̃ − (1 + σ)s)sG4(σ)

+B(X̃ − s)B(X̃ − σs)BX̃(X̃ − (1 + σ)s)sG5(σ)}, (6.3)

where

γ1 =
(i−4νI2 − I4)
(I3 − i−4νI1)

, γ2 =
i1−2ν(1 + 2ν)2

(I3 − i−4νI1)2u2
0Γ2( 1

2 − ν)

(
q′0
u0

)1−4ν

, (6.4)

with the initial condition B(X̃) → 0 as X̃ → −∞. This evolution equation is the
main analytical result of our study; note that it is an integro-differential equation
whose kernel contains nonlinear ‘cubic’ combinations of the amplitude functionB and
its derivative. Moreover, note that the nonlinear term depends on the entire history
of the evolution, rather than just on the value of B and BX̃ at the location X̃. Such
evolution equations (though generally not containing derivatives in the nonlinear
terms) often arise from non-equilibrium critical-layer studies; the study by Hickernell
(1984) is usually cited as the first in which the weakly nonlinear analysis leads to an
integro-differential equation rather than the more familiar Stuart–Landau–Watson
equation.

We consider the solution properties of (6.3) both analytically and numerically.
In Appendix D we consider analytically the possibility that some solutions of (6.3)
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Figure 6. The argument of b(x̃) (in the range −π to +π) for λ0 = 37.5.

will terminate abruptly in an algebraic singularity. Let us now consider numerical
calculations for which it is convenient to introduce the variable

x̃ = |B0|2 exp{2γ1rX̃}, (6.5)

with γ1r denoting the real part of γ1 (this is similar to the ‘logarithmic time’ variable
which was introduced by Churilov & Shukhman 1988). We also set

B(X̃) = B0b(X̃) exp{γ1X̃}, (6.6)

where the constant B0 is chosen such that b(X̃)→ 1 as X̃ → −∞, note that the
requirement B(X̃)→ 0 as X̃ → −∞ is satisfied as our numerical calculations confirm
γ1r to be always positive. After this we find that the evolution equation reduces to

∂b

∂x̃
=
∫ 1

0
dσ
∫ ∞

0
dr r1−4νe−2γ1rr

{
b(x̃e−r/(1+σ))b(x̃e−σr/(1+σ))b(x̃e−r)(rGA +GB)

+
∂b

∂x̃
(x̃e−r/(1+σ))b(x̃e−σr/(1+σ))b(x̃e−r)x̃rGC

+b(x̃e−r/(1+σ))
∂b

∂x̃
(x̃e−σr/(1+σ))b(x̃e−r)x̃rGD

+b(x̃e−r/(1+σ))b(x̃e−σr/(1+σ))
∂b

∂x̃
(x̃e−r)x̃rGE

}
, (6.7)

where

GA(σ) =
γ2

2γ1r(1 + σ)2−4ν (G1(σ) +G3(σ) +G4(σ) +G5(σ)), (6.8 a)

{GB(σ), GC(σ), GD(σ), GE(σ)} =
γ2

2γ1r(1 + σ)1−4ν {G2(σ), G3(σ), G4(σ), G5(σ)}.
(6.8 b)

Let us now consider some numerical solutions of the evolution equation (6.7). It
is not possible to eliminate the parameter x1 from the equation as it does not occur
in all terms (cf. Blackaby et al. (1993) where the parameter J1 was eliminated from
the final evolution equation) and so for these numerical solutions we have taken the
representative value x1 = −1.0 (note that we are considering a location upstream
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Figure 7. The real (x-axis) and imaginary (y-axis) parts of b(x̃), showing its evolution as x̃
increases for λ0 = 55.

of the neutral location). In order to focus attention on the effect of increasing â
(a consequence of boundary-layer growth and the experimental observation that
Görtler vortices conserve their physical spanwise wavenumber) we choose to consider
a crossflow which does not vary with streamwise location and so set λ1 = 0. In
figure 5 we show the magnitude of b(x̃) for the case when λ0 = 25.0, this is close
to the neutral point â = 1.316. It is easily seen that a large increase in amplitude
occurs very rapidly and we suspect that the solution is breaking up. In Appendix
D we consider algebraic singularity type solutions of (6.3), (6.7) but are unable to
prove their existence. We find that b(x̃) actually evolves in a spiral (in the complex
plane of b) and in an effort to show this we have plotted in figure 6 the argument of
b(x̃) (in the range −π to +π) for the case when λ0 = 37.5. We find that as the value
of the crossflow is increased the growth of the disturbance is damped and does not
occur as rapidly. In figure 7 we have plotted the real part of b(x̃) on the x-axis and
the imaginary part on the y-axis for a crossflow value of λ0 = 55.0. This plot covers
the evolution of b(x̃) from x̃ = 0 through to x̃ = 4.767 and although this amplitude
growth is considerably less than that for the case when λ0 = 25.0 (figure 5) it is still
large enough to make the spiral pattern difficult to present graphically. We predict
that the rapid increase in the disturbance amplitude for these three cases means that
the disturbance will enter region IIIb in figure 4 where the dominant nonlinear term
in the evolution equation is the quintic. This means that it may be necessary in the
future to derive the quintic nonlinear term via a critical layer analysis similar to that
of §4 and obtain numerical solutions for this new evolution equation. However, if
we increase the crossflow further we find that this rapid increase in the disturbance
amplitude does not occur. Considering a value of λ0 = 75.0 in figure 8 we can see
that there is hardly any increase in the disturbance amplitude. Consequently, it is
unlikely that the disturbance will enter region IIIb in figure 4 where the evolution
equation would be dominated by the quintic nonlinearity.

We have shown that, at least for the nonlinear evolution equation with cubic
nonlinearity due to supercriticality effects, crossflow has the same effect as with
a linear stability study: it has a stabilizing influence on inviscid Görtler vortices.
This stabilizing influence manifests itself in delaying the large amplitude growth
of the disturbance. The large amplitude growth which occurs for smaller values of
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Figure 8. The amplitude of b(x̃) for λ0 = 75.

the crossflow suggests that in future work it is necessary to consider the evolution
equation with quintic nonlinearity. The much smaller amplitude growth which occurs
for larger values of the crossflow necessitates that we will have to consider a steady,
viscous critical-layer analysis for the subsequent evolution of these modes. Recall that
viscous-spreading of the boundary-layer results in the growth rate decreasing and so
in the absence of large-amplitude growth (which only occurs for smaller crossflow
values) the disturbance will enter region I in figure 4.

7. Conclusion

In this paper we have considered the nonlinear development of inviscid Görtler
vortices in an incompressible boundary-layer flow using non-equilibrium critical-layer
theory. We knew from earlier work concerned with stratified-shear flows that it was
necessary to consider three different possible integro-differential amplitude equations;
one where the nonlinearity is cubic in nature and is directly due to viscous effects;
another where the nonlinearity is also cubic in nature but due to supercriticality
(non-neutrality) effects; and a third where the nonlinearity is quintic in nature. In
this paper, attention has been concentrated on the former two since the two evo-
lution equations with cubic-nonlinearities are relevant for smaller disturbance sizes.
However, in §5 we demonstrated that for the incompressible flow being considered
here, the nonlinear cubic-jump directly due to viscous effects is zero and hence there
is no associated ‘viscous-cubic’ evolution equation. Even if this was not the case,
we note that based on our assumptions concerning viscous-spreading resulting in
an unstable linear disturbance mode approaching a later neutral state, initially the
disturbance is associated with locations in the bottom right-hand corner of figure 4,
indicating that the evolution equation with cubic nonlinearity due to supercritical-
ity (non-neutrality) effects merits the first attention. Consequently, in this paper we
have concentrated on obtaining numerical results for this evolution equation. In fact,
our spatial-stability approach has resulted in streamwise derivatives of the amplitude
function appearing in the nonlinear term; this appears to be a relatively novel feature
of our integro-differential evolution equation.

The numerical solutions show that for small values of the crossflow parameter the
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disturbance amplitude evolves by describing a spiral, in the complex plane, of rapidly
increasing amplitude. This large increase in the amplitude of the disturbance means
that the evolution process will soon move on to a stage where the evolution of the
mode is governed by an integro-differential amplitude equation with a quintic nonlin-
earity. In the related study of Blackaby et al. (1993) the integro-differential equation
with a quintic nonlinearity leads to continued growth of the disturbance amplitude
which results in the effects of nonlinearity spreading to outside the critical level,
by which time the flow has become fully nonlinear. Although we have noted many
similarities between of the nonlinear evolution of modes on unstable stratified shear
layers, and the nonlinear evolution of inviscid Görtler vortices in three-dimensional
boundary layers, we are unable to deduce the properties of solutions of the quin-
tic integro-differential equation for the Görtler problem from the earlier results of
Blackaby et al. (1993) because of the major differences in the kernel functions for the
two problems. The daunting task of deriving, and obtaining numerical solutions of,
the integro-differential with quintic nonlinearity for the Görtler problem will need to
be undertaken in order to clarify further the nonlinear evolution process of inviscid
Görtler vortices in flows that are only very slightly three dimensional. However, for
larger values of the crossflow we find that the disturbance amplitude still evolves
by describing a spiral in the complex plane but its amplitude increases only very
slowly, indicating that crossflow has a significant stabilizing influence, on the Görtler
instability, for the nonlinear problem as well as the linear problem.

As mentioned above, further work is needed to address the subsequent nonlinear
evolution of the disturbance once its size has grown such that it is governed by the
integro-differential equation with quintic nonlinearity. Another extension of the work
in this paper would be to consider compressible three-dimensional boundary-layer
flows; linear stability studies of such flows show that a larger crossflow is needed to
stabilize the Görtler vortices and it would be interesting to see what effect compress-
ibility has on the results presented here. Finally, we note that the theory developed
here can be applied to other flows (e.g. it could be used to study of the nonlinear
evolution of inviscid vortex instabilities in the three-dimensional flow above a heated
plate).

The authors are extremely grateful to Professor S. M. Churilov for his detailed correspondence
regarding Churilov & Shukhman (1988). The second author is grateful to colleagues at Imperial
College who gave him advice and encouragement regarding the numerical computations when
he presented a seminar there. The authors are also grateful to the referees for their helpful
comments on the original manuscript.

Appendix A. The solution of equation (4.28)

On writing

∆1 =
1

2ν

(
r

(3a)
10 − q1r

(3a)
11

(1 + 2ν)q′0

)
, (A 1 a)

∆2 =
a1

a0

(
1− 2βu′0

(1 + 2ν)iq′0

)
, (A 1 b)

∆3 =
u′0q1

(1 + 2ν)u0q
′
0
, (A 1 c)
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where r(3a)
10 and r(3a)

11 are defined by (4.22a, b), the solution of equation (4.28) can be
written

Φ̂(2)
2 = − i−1−2ν(1 + 2ν)2

4u2
0Γ2( 1

2 − ν)

(
q′0
u0

)−1−2ν

×
∫ ∞

0
dx
∫ ∞

0
dx̂
∫ ∞

0
dx1

∫ ∞
0

dx2 (x1x2)−3/2−ν

×(x1 − x2)2(x1 + x2)1/2+ν(2x̂+ x1 + x2)−1−2ν

×(2x+ 2x̂+ x1 + x2)−3/2+ν

×[(u0 ∂/∂X̃ + 2iq′0[r(3a)
11 η + r

(3a)
10 ])

×(B(X̃ − x− x̂− x1)B(X̃ − x− x̂− x2))]

× exp{−i(2x+ 2x̂+ x1 + x2)(q′0η + q1)/u0}

− i−1−2ν(1 + 2ν)
4u2

0Γ2( 1
2 − ν)

(
q′0
u0

)−1−2ν

×
∫ ∞

0
dx
∫ ∞

0
dx1

∫ ∞
0

dx2 (x1x2)−3/2−ν

×(x1 + x2)1/2−ν(2x+ x1 + x2)−3/2+ν

×
{

[(x1 + x2)((1 + 2ν)u′0 + u0r
(3a)
11 )

−iq′0(x2
1 + x2

2)(r(3a)
11 η + (1 + 2ν)(∆1 + ∆2))

+2iq′0x1x2((2 + u0r
(3a)
11 /u′0)η + (1 + 2ν)(∆1 + ∆2 + 2∆3))]

×B(X̃ − x− x1)B(X̃ − x− x2)

+
[(1 + 6ν)u′0 − u0r

(3a)
11 ]

2ν
x1x2(B(X̃ − x− x1)B(X̃ − x− x2))X̃

−u′0[x2
2BX̃(X̃ − x− x1)B(X̃ − x− x2)

+x2
1B(X̃ − x− x1)BX̃(X̃ − x− x2)]

+
[u0r

(3a)
11 − u′0]

2ν
[x2

2B(X̃ − x− x1)BX̃(X̃ − x− x2)

+x2
1BX̃(X̃ − x− x1)B(X̃ − x− x2)]

}
× exp{−i(2x+ x1 + x2)(q′0η + q1)/u0}. (A 2)
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Appendix B. The cubic-nonlinear jump terms

The five parts of the nonlinear cubic jump due to supercriticality effects (see
equation (4.38)) are given by

(D(4)
+ −D(4)

− )00

= − i−2ν(1 + 2ν)u′0
8νu2

0q
′
0Γ4( 1

2 − ν)

(
q′0
u0

)1−4ν ∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3 (x1x2x3)−3/2−ν

×(x3 − x1 − x2)1/2−ν
{
x3B(X̃ + x1 + x2 − 2x3)

×[BX̃(X̃ + x1 − x3)B(X̃ + x2 − x3)x1 (x1 − x3)2

+B(X̃ + x1 − x3)BX̃(X̃ + x2 − x3)x2 (x2 − x3)2]

− 1
4νu′0

((1 + 6ν)u′0 − u0r
(3a)
11 )x1 x2 x3B(X̃ + x1 + x2 − 2x3)

×[BX̃(X̃ + x1 − x3)B(X̃ + x2 − x3)(x1 − x3)

+B(X̃ + x1 − x3)BX̃(X̃ + x2 − x3)(x2 − x3)]

+B(X̃ + x1 − x3)B(X̃ + x2 − x3)BX̃(X̃ + x1 + x2 − 2x3)

×x3[x1(x1 − x3)2 + x2(x2 − x3)2]

+B(X̃ + x1 + x2 − 2x3)x3

×[BX̃(X̃ + x1 − x3)B(X̃ + x2 − x3)x2(x2 − x3)2

+B(X̃ + x1 − x3)BX̃(X̃ + x2 − x3)x1(x1 − x3)2]

+2x1x2x3(B(X̃ + x1 − x3)B(X̃ + x2 − x3)

×BX̃(X̃ + x1 + x2 − 2x3)(x1 + x2 − 2x3)

+B(X̃ + x1 + x2 − 2x3)[BX̃(X̃ + x1 − x3)B(X̃ + x2 − x3)(x2 − x3)

+B(X̃ + x1 − x3)BX̃(X̃ + x2 − x3)(x1 − x3)])
}
H(x3 − x1 − x2), (B 1)

(D(4)
+ −D(4)

− )01

= − i1−2ν(1 + 2ν)2

16νu2
0Γ4( 1

2 − ν)

(
q′0
u0

)1−4ν ∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3B(X̃ + x1 − x3)

×B(X̃ + x2 − x3)B(X̃ + x1 + x2 − 2x3)(x1x2x3)−3/2−ν(x3 − x1 − x2)1/2−ν

×
{
− i

2ν
[r(3a)

10 − (1 + 6ν)∆3]x3[x1(x1 − x3)2 + x2(x2 − x3)2]

+
u′0
q′0
x1x2(x1 + x2 − 2x3)− i[∆1 + 2(1 + 2ν)∆3]x1x2x3(2x3 − x1 − x2)

+
[(4ν2 − 4ν − 1)u′0 − (1 + ν)u0r

(3a)
11 ]

(1 + 2ν)νq′0
x3[x1(x3 − x1) + x2(x3 − x2)]

}
×H(x3 − x1 − x2), (B 2)
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(D(4)
+ −D(4)

− )20

=
i−2ν(1 + 2ν)2u′0

32νu2
0q
′
0Γ4( 1

2 − ν)

(
q′0
u0

)1−4ν

×
∫ ∞

0
dx
∫ ∞

0
dx1

∫ ∞
0

dx2

∫ ∞
0

dx3 (x1x2x3)−3/2−ν

×(x1 − x2)2(x1 + x2)1/2+ν

×(2x+ x1 + x2)−3/2−ν(x3 − 2x− x1 − x2)1/2−ν

×
{
B(X̃ + x+ x1 − x3)B(X̃ + x+ x2 − x3)BX̃(X̃ + 2x+ x1 + x2 − 2x3)

×
[
2(2x+ x1 + x2)2 −

(
(1 + 6ν)u′0 − u0r

(3a)
11

2νu′0

)
x3(2x+ x1 + x2)

+
(

(1− 6ν)u′0 − u0r
(3a)
11

νu′0

)
x2

3

]
+(B(X̃ + x+ x1 − x3)B(X̃ + x+ x2 − x3))X̃

×B(X̃ + 2x+ x1 + x2 − 2x3)

×(2x+ x1 + x2 + 2x3)(2x+ x1 + x2 − 2x3)
}

×H(x3 − 2x− x1 − x2), (B 3)

(D(4)
+ −D(4)

− )21

= − i1−2ν(1 + 2ν)3

16νu2
0Γ4( 1

2 − ν)

(
q′0
u0

)1−4ν

×
∫ ∞

0
dx
∫ ∞

0
dx1

∫ ∞
0

dx2

∫ ∞
0

dx3B(X̃ + x+ x1 − x3)

×B(X̃ + x+ x2 − x3)B(X̃ + 2x+ x1 + x2 − 2x3)

×(x1x2x3)−3/2−ν(x1 − x2)2(x1 + x2)1/2+ν

×(2x+ x1 + x2)−3/2−ν(x3 − 2x− x1 − x2)1/2−ν

×
{

(∆3 − 1
2∆1)(2x+ x1 + x2)x3 + ∆1x

2
3

− i
2q′0

(
u′0 −

u0r
(3a)
11

(1 + 2ν)

)
(2x+ x1 + x2)

+
i
q′0

(
u′0 −

2u0r
(3a)
11

(1 + 2ν)

)
x3

}
×H(x3 − 2x− x1 − x2), (B 4)
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(D(4)
+ −D(4)

− )22

=
i1−2ν(1 + 2ν)3

32νu2
0Γ4( 1

2 − ν)

(
q′0
u0

)1−4ν

×
∫ ∞

0
dx
∫ ∞

0
dx̂
∫ ∞

0
dx1

∫ ∞
0

dx2

∫ ∞
0

dx3 (x1x2x3)−3/2−ν

×(x3 − 2x− 2x̂− x1 − x2)1/2−ν(x1 − x2)2(x1 + x2)1/2+ν

×(2x̂+ x1 + x2)−1−2ν(2x+ 2x̂+ x1 + x2)−1/2+ν

×(2x3 − 2x− 2x̂− x1 − x2)B(X̃ + 2x+ 2x̂+ x1 + x2 − 2x3)

×[−i(u0/q
′
0)(B(X̃ + x+ x̂+ x1 − x3)B(X̃ + x+ x̂+ x2 − x3))X̃

+2r(3a)
10 B(X̃ + x+ x̂+ x1 − x3)B(X̃ + x+ x̂+ x2 − x3)]

×H(x3 − 2x− 2x̂− x1 − x2)

+
i1−2ν(1 + 2ν)3

32νu2
0Γ4( 1

2 − ν)

(
q′0
u0

)1−4ν

×
∫ ∞

0
dx
∫ ∞

0
dx1

∫ ∞
0

dx2

∫ ∞
0

dx3 (x1x2x3)−3/2−ν

×(x3 − 2x− x1 − x2)1/2−ν(x1 + x2)1/2−ν

×(2x+ x1 + x2)−1/2+ν(2x3 − 2x− x1 − x2)B(X̃ + 2x+ x1 + x2 − 2x3)

×
[{
−(∆1 + ∆2)(x2

1 + x2
2) + 2(∆1 + ∆2 + 2∆3)x1x2

− i
q′0

(
u′0 +

u0r
(3a)
11

(1 + 2ν)

)
(x1 + x2)

}
×B(X̃ + x+ x1 − x3)B(X̃ + x+ x2 − x3)

− i
(1 + 2ν)q′0

{
1

2ν
[(1 + 6ν)u′0 − u0r

(3a)
11 ]x1x2

×(B(X̃ + x+ x1 − x3)B(X̃ + x+ x2 − x3))X̃

−u′0x2
2B(X̃ + x+ x1 − x3)BX̃(X̃ + x+ x2 − x3)

−u′0x2
1BX̃(X̃ + x+ x1 − x3)B(X̃ + x+ x2 − x3)

− 1
2ν

(u′0 − u0r
(3a)
11 )(x2

2BX̃(X̃ + x+ x1 − x3)B(X̃ + x+ x2 − x3)

+x2
1B(X̃ + x+ x1 − x3)BX̃(X̃ + x+ x2 − x3))

}]
×H(x3 − 2x− x1 − x2), (B 5)

where r(3a)
10 , r(3a)

11 are defined by (4.22a, b), and ∆1, ∆2, ∆3 are defined in Appendix A
(see (A 1a–c)).
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Appendix C. The kernel functions

For our numerical calculations it is necessary to convert the jump expression into
kernel form, (6.2). The kernels in equation (6.2) can be written

G1(σ) = − i
4Γ(1− 2ν)

σ1−2ν(1 + σ)−3/2−ν
[

(1− 2ν)
2ν(1 + 2ν)

[r(3a)
10 − (1 + 6ν)∆3](1 + σ)

×
[
2σF1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 1− 2ν;σ;
σ

1 + σ

)
+F1

(
3
2
− ν, 3

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)]
−[∆1 + 2(1 + 2ν)∆3]F1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)]
+

1
Γ2( 1

2 − ν)
[σ(1− σ)]1−2ν

×
∫ 1

0
dr

r−1/2−ν(1− r)1/2−ν(1− σr)−3/2+3ν(1 + σr)−1/2−ν

(1− σ2r)3/2+ν

×[(1− σ)(1 + σr)∆1 − (1− σ2r)( 1
2∆1 −∆3)]

×F1(− 1
2 − ν,−1

4 − 1
2ν; 3

4 − 1
2ν;σ2r2)

− (1 + 2ν)
2Γ2( 1

2 − ν)
σ1−2ν(1 + σ)(1− σ)1/2−3ν

×
∫ 1

0
dr

r1/2−ν(1− r)−1/2−ν(1− σr)−3/2−ν

(1 + σ − σr)2

[
1

(1 + 2ν)
(∆1 + ∆2)(1− σr)2

×F1

(
− 1

2
− ν, 3

2
− 3ν,−1

2
+ ν,

1
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

+
1

(3− 2ν)
(∆1 + ∆2)σ2(1− r)2

×F1

(
3
2
− ν, 3

2
− 3ν,−1

2
+ ν,

5
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

−2(∆1 + ∆2 + 2∆3)
(1− 2ν)

σ(1− r)(1− σr)

×F1

(
1
2
− ν, 3

2
− 3ν,−1

2
+ ν,

3
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)]

−(1 + 2ν)r(3a)
10

2Γ2( 1
2 − ν)

σ2−2ν(1− 2σ)(1− σ)2(1 + σ)

×
∫ 1

0
dr r1/2−ν(1− r)1/2−ν(1 + σ − σr)−3/2−ν(1 + σ − 2σr)−1/2+ν

×
∫ 1

0
dv [1 + σ − 2σr − 2σ(1− r)v]−1−2ν

∫ 1

0
du [1− (u+ v)]−3/2−ν

×[1− σr − (1− r)(u+ v)]−3/2−ν [1 + σ − 2σr − 2σ(1− r)(u+ v)]1/2+ν ,

(C 1)
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G2(σ) =
1

4q′0Γ(1− 2ν)
σ1−2ν

(1 + σ)3/2+ν

×
{
u′0(1 + σ)F1

(
3
2
− ν, 1

2
+ ν,

3
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)
+

[(4ν2 − 4ν − 1)u′0 + (1 + ν)u0r
(3a)
11 ]

ν(1 + 2ν)

×σ
[
F1

(
3
2
− ν, 1

2
+ ν,

3
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)
+

(1− 2ν)
4(1− ν)

F1

(
3
2
− ν, 3

2
+ ν,

3
2

+ ν, 3− 2ν;σ;
σ

1 + σ

)]}
− i

2(1 + 2ν)q′0Γ2( 1
2 − ν)

σ1−2ν

(1− σ)2ν

×
∫ 1

0
dr r−1/2−ν(1− r)1/2−ν(1− σr)−1/2+3ν

×(1 + σr)−3/2−ν(1− σ2r)−3/2−ν

×{(1− σ)(1 + σr)[(1 + 2ν)u′0 − u0r
(3a)
11 ]

−2(1− σ2r)[(1 + 2ν)u′0 − 2u0r
(3a)
11 ]}

×F (− 1
2 − ν,−1

4 − 1
2ν; 3

4 − 1
2ν;σ2r2)

− i[u0r
(3a)
11 + (1 + 2ν)u′0]
2q′0Γ2( 1

2 − ν)
σ1−2ν(1 + σ)(1− σ)1/2−3ν

×
∫ 1

0
dr r1/2−ν(1− r)−1/2−ν(1− σr)−1/2+ν(1 + σ − σr)−2

×
{

1
(1− 2ν)

σ(1− r)(1− σ)−1

×F1

(
1
2
− ν, 1

2
− 3ν,−1

2
+ ν,

3
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

− 1
(1 + 2ν)

(1− σr)

×F1

(
− 1

2
− ν, 1

2
− 3ν,−1

2
+ ν,

1
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)}

,

(C 2)

G3(σ) =
i

4q′0Γ2( 1
2 − ν)

σ1−2ν(1 + σ)(1− σ)1/2−3ν

×
∫ 1

0
dr

r1/2−ν(1− r)−1/2−ν(1− σr)−1/2+ν

(1 + σ − σr)2

×
[

[u0r
(3a)
11 − (1 + 6ν)u′0]
ν(1− 2ν)

σ(1− r)
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×F1

(
1
2
− ν, 3

2
− 3ν,−1

2
+ ν,

3
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

+
2u′0

(3− 2ν)
σ2(1− r)2

1− σr

×F1

(
3
2
− ν, 3

2
− 3ν,−1

2
+ ν,

5
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

− [u′0 − r(3a)
11 u0]

ν(1 + 2ν)
(1− σr)

×F1

(
− 1

2
− ν, 3

2
− 3ν,−1

2
+ ν,

1
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)]

− iu′0
2(1 + 2ν)q′0Γ(1− 2ν)

σ1−2ν(1 + σ)−1/2−ν

×
{
F1

(
3
2
− ν, 3

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)

− [(1 + 6ν)u′0 − r(3a)
11 u0]

4νu′0
F1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)
+2σ

[
(1− 2ν)
(1 + 2ν)

F1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 1− 2ν;σ;
σ

1 + σ

)
+F1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)]}
− iu′0

2(1 + 2ν)q′0Γ2( 1
2 − ν)

σ1−2ν(1− σ)1/2−ν

×
∫ 1

0
dr

r1/2−ν(1− r)−1/2−ν(1− σr)1/2+ν

(1 + σ − σr)3/2+ν

×(1 + σ − 2σr)−3/2−ν(1 + σ)(3 + 3σ − 4σr)

×F
(
− 1

2
− ν,−1

4
− 1

2
ν;

3
4
− 1

2
ν;
σ2(1− r)2

(1− σr)2

)
+

i(1 + 2ν)u0

4q′0Γ2( 1
2 − ν)

σ2(1−ν)(1− 2σ)(1− σ)2(1 + σ)

×
∫ 1

0
dr r1/2−ν(1− r)1/2−ν(1 + σ − σr)−3/2−ν(1 + σ − 2σr)−1/2+ν

×
∫ 1

0
dv[1 + σ − 2σr − 2σ(1− r)v]−1−2ν

∫ 1

0
du(1− u− v)−3/2−ν

×[1− σr − (1− r)(u+ v)]−3/2−ν [1 + σ − 2σr − 2σ(1− r)(u+ v)]1/2+ν ,

(C 3)
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G4(σ) =
i

4q′0Γ2( 1
2 − ν)

σ1−2ν(1 + σ)(1− σ)1/2−3ν

×
∫ 1

0
dr

r1/2−ν(1− r)−1/2−ν(1− σr)−1/2+ν

(1 + σ − σr)2

×
[

[u0r
(3a)
11 − (1 + 6ν)u′0]
ν(1− 2ν)

σ(1− r)

×F1

(
1
2
− ν, 3

2
− 3ν,−1

2
+ ν,

3
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

+
[u′0 − r(3a)

11 u0]
ν(3− 2ν)

σ2(1− r)2

1− σr
×F1

(
3
2
− ν, 3

2
− 3ν,−1

2
+ ν,

5
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)

− 2u′0
(1 + 2ν)

(1− σr)

×F1

(
− 1

2
− ν, 3

2
− 3ν,−1

2
+ ν,

1
2
− ν;

σ(1− r)
1− σr ;−σ(1− r)

1− σr
)]

− iu′0
2(1 + 2ν)q′0Γ(1− 2ν)

σ1−2ν(1 + σ)−1/2−ν

×
{
−F1

(
3
2
− ν, 3

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)
− [(1 + 6ν)u′0 − r(3a)

11 u0]
4νu′0

σF1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)
+2
[

(1− 2ν)
(1 + 2ν)

σF1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 1− 2ν;σ;
σ

1 + σ

)
+F1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)]}
− iu′0

2(1 + 2ν)q′0Γ2( 1
2 − ν)

σ1−2ν(1− σ)1/2−ν

×
∫ 1

0
dr

r1/2−ν(1− r)−1/2−ν(1− σr)1/2+ν

(1 + σ − σr)3/2+ν

×(1 + σ − 2σr)−3/2−ν(1 + σ)(3 + 3σ − 4σr)

×F
(
− 1

2
− ν,−1

4
− 1

2
ν;

3
4
− 1

2
ν;
σ2(1− r)2

(1− σr)2

)
+

i(1 + 2ν)u0

4q′0Γ2( 1
2 − ν)

σ2(1−ν)(1− 2σ)(1− σ)2(1 + σ)

×
∫ 1

0
dr r1/2−ν(1− r)1/2−ν(1 + σ − σr)−3/2−ν(1 + σ − 2σr)−1/2+ν

×
∫ 1

0
dv[1 + σ − 2σr − 2σ(1− r)v]−1−2ν

∫ 1

0
du(1− u− v)−3/2−ν

×[1− σr − (1− r)(u+ v)]−3/2−ν [1 + σ − 2σr − 2σ(1− r)(u+ v)]1/2+ν , (C 4)
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G5(σ) =
iu′0

(1 + 2ν)q′0Γ(1− 2ν)
σ1−2ν

(1 + σ)1/2+ν

×
[

1
2
F1

(
3
2
− ν, 3

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)
−(1− 2ν)

(1 + 2ν)
σF1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 1− 2ν;σ;
σ

1 + σ

)
−(1 + σ)F1

(
3
2
− ν, 1

2
+ ν,

1
2

+ ν, 2− 2ν;σ;
σ

1 + σ

)]
+

i
4ν(1 + 2ν)q′0Γ2( 1

2 − ν)
σ1−2ν(1− σ)1/2−ν

×
∫ 1

0
dr r1/2−ν(1− r)−1/2−ν(1− σr)1/2+ν

×(1 + σ − σr)−3/2−ν(1 + σ − 2σr)−3/2−ν

×F
(
− 1

2
− ν,−1

4
− 1

2
ν;

3
4
− 1

2
ν;
σ2(1− r)2

(1− σr)2

)[
4νu′0(1 + σ − 2σr)2

−[(1 + 6ν)u′0 − r(3a)
11 u0](1 + σ − σr)(1 + σ − 2σr)

+2[(1− 6ν)u′0 − r(3a)
11 u0](1 + σ − σr)2

]
, (C 5)

where F is the hypergeometric function of one variable and F1 the hypergeometric
function of two variables (see Erdélyi (1953) and Abramowitz & Stegun (1964) for
details). The quantities r(3a)

10 , r(3a)
11 are defined by (4.22a, b), and ∆1, ∆2, ∆3 are

defined in Appendix A (see (A 1a–c)).

Appendix D. Finite-distance break-up solutions of equation (6.3)

Often, nonlinear evolution equations arising from weakly nonlinear studies permit
so-called finite-distance break-up solutions (for certain ranges of parameter values).
Here, we investigate such a possibility for our evolution equation (6.3).

Let us suppose that a solution to (6.3) terminates, as X̃ → X̃0, as an algebraic
singularity of the form

B(X̃) = B∗ × (X̃0 − X̃)−r(1 +O(X̃0 − X̃)); Re[r] > 0, (D 1)

where the (complex) constants B∗ and r are to be determined.
Substituting (D 1) into the evolution equation (6.3) leads, after some manipulation,

to the conditions

Re[r] = (3− 4ν)/2, |B∗|2 =
r

γ2(Ĩ2 + rĨ3 + rĨ4 + rĨ5)
, (D 2)

where r denotes the complex conjugate of r, and

Ĩ2 =
∫ 1

0
dσG2(σ)(1 + σ)−2+4ν

∫ 1

0
dxx1−4ν(1− x)r

(
1− σx

1 + σ

)−r(
1− x

1 + σ

)−r
,

(D 3 a)
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Ĩ3 =
∫ 1

0
dσG3(σ)(1 + σ)−3+4ν

∫ 1

0
dxx2−4ν(1− x)r

(
1− σx

1 + σ

)−r−1(
1− x

1 + σ

)−r
,

(D 3 b)

Ĩ4 =
∫ 1

0
dσG4(σ)(1 + σ)−3+4ν

∫ 1

0
dxx2−4ν(1− x)r

(
1− σx

1 + σ

)−r(
1− x

1 + σ

)−r−1

,

(D 3 c)

Ĩ5 =
∫ 1

0
dσG5(σ)(1 + σ)−3+4ν

∫ 1

0
dxx2−4ν(1− x)r

(
1− σx

1 + σ

)−r(
1− x

1 + σ

)−r
.

(D 3 d)

Note that since ν < −1/2 for the modes considered, equation (D 2 a) shows that the
condition Re[r] > 0 is always satisfied. Taking real and imaginary parts of equation
(D 2 b) should then enable us to determine the remaining two unknowns, Im[r] and
|B∗|2. Then the fact that |B∗|2 is positive would lead to a condition on γ2 that would
determine whether an algebraic singularity occurs. However, it is impossible to solve
(D 2 b) analytically (to determine Im[r] and |B∗|2) and hence we can not determine
analytically whether an algebraic singularity occurs.
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Hall, P. 1990 Görtler vortices in growing boundary layers: the leading edge receptivity problem,

linear growth and the nonlinear breakdown stage. Mathematika 7, 151–189.
Hall, P. & Morris, H. 1992 On the instability of boundary layers on heated flat plates. J. Fluid

Mech. 245, 367–400.
Hall, P. & Smith, F. T. 1984 On the effects of nonparallelism, three-dimensionality, and mode

interaction in nonlinear boundary-layer stability. Stud. Appl. Math. 70, 91–120.
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer

transition. J. Fluid Mech. 227, 641–666.
Hickernell, F. J. 1984 Time-dependent critical layers in shear flows on the beta-plane. J. Fluid

Mech. 142, 431–449.
Hultgren, L. S. 1992 Nonlinear spatial equilibration of an externally excited instability wave in

a free shear layer. J. Fluid Mech. 236, 635–664.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1016 N. Blackaby, A. Dando and P. Hall

Maslowe, S. A. 1986 Critical layers in shear flows. A. Rev. Fluid Mech. 18, 405–432.
Michalke, A. 1964 On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid

Mech. 19, 543–556.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508.
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Dyn. 25, 25–33.
Timoshin, S. N. 1996 Receptivity problems in the weakly nonlinear stability theory at large

Reynolds numbers. In Proc. of the IUTAM Symp. on Nonlinear Instability and Transition in
Three Dimensional Boundary Layers, pp. 399–407. Kluwer.

Warn, T. & Warn, H. 1978 The evolution of a nonlinear critical level. Stud. Appl. Math. 59,
37–71.

Wu, X. 1992 The nonlinear evolution of high-frequency resonant-triad waves in an oscillatory
Stokes-layer at high Reynolds number. J. Fluid Mech. 245, 553–597.

Wu, X. 1993 Nonlinear temporal-spatial modulation of near-planar Rayleigh waves in shear
flows: formation of streamwise vortices. J. Fluid Mech. 256, 685–719.

Wu, X., Lee, S. S. & Cowley, S. J. 1993 On the weakly nonlinear three-dimensional instability
of shear layers to pairs of oblique waves: the Stokes layer as a paradigm. J. Fluid Mech. 253,
681–721.

Received 9 September 1995; revised 11 June 1996; accepted 18 September 1996

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

